Phys 1-04
Thursday, December 1,2022 10:38 AM
Momentum Collisions Impulse

$$
\begin{aligned}
& \sum \vec{F}=m \vec{a}=m \frac{d \vec{v}}{d t} \\
& \sum \vec{F} d t=m d \vec{V}
\end{aligned} \quad \sum \stackrel{\rightharpoonup}{F}=\frac{d \vec{P}}{d t}
$$

$$
\underbrace{\sum \vec{F} \Delta t}_{\text {impulse_ charge }}=m \Delta \vec{v}=\Delta \vec{P} ; \underbrace{\text { moventrun. }}_{\overrightarrow{\vec{P}} \equiv m \vec{v}} \quad \frac{d}{d t}(\vec{P}=m \vec{v})
$$

$$
\sum \vec{F} d t \equiv \vec{J} \equiv \text { impulse }=[N S]=\left[\operatorname{kg} \frac{m}{s}\right] \equiv P=m V=\left[\begin{array}{l}
\operatorname{kg}_{g \frac{1}{\sigma}}
\end{array}\right]\binom{\text { rocket }}{\text { eq ?!! }}
$$

when two objects interact.
through contact forces.

action-reaction pairs

$$
\stackrel{\rightharpoonup}{F}_{12}=-\stackrel{\rightharpoonup}{F}_{21}
$$

foot ball

$\rightarrow \stackrel{\rightharpoonup}{F}$ pairs

area under cure

$$
\int \vec{F} d t=\vec{F}_{\text {ave }} \Delta t \equiv \vec{J}=\vec{P}_{f}-\vec{P}_{j}
$$

Force on the foot

$\begin{array}{ll}\text { lupulse on } 2^{\text {nd }} \text { obj } & =\text { chape in wovertur of } 2^{\text {nd }} \text { obj } \\ " & 1^{\text {st }} \\ \text { " } & ={ }^{\text {" }}\end{array}$
(ex)
the collision took 0.1 s

$$
\vec{F}_{\text {ave }}=? \quad \frac{60 \mathrm{~km}}{\mathrm{wv}}=\frac{60000 \mathrm{~m}}{3600 \mathrm{~s}}=\frac{60}{3.6}
$$

$$
\vec{J}=\vec{F}_{\text {ave }} \Delta t=\Delta \vec{P}
$$

$$
?(0-1)=m \vec{l}_{f}-m \vec{l}_{i}
$$

$$
\rightarrow \begin{array}{ll}
\vec{\imath} & \vec{v}_{i}=-16.7 \mathrm{~m} / \mathrm{s} \hat{\imath} \\
& \vec{v}_{f}=1.4 \mathrm{~m} / \mathrm{s} \hat{\imath}
\end{array}
$$

$$
\vec{F}_{\text {ave }}(0.1)=1000(1.4-(-16.7)) \hat{\imath}
$$

$\stackrel{\rightharpoonup}{F}$ ave $\hat{\imath} \vec{F}_{\text {ave }}=+18.1 \times 10^{4} \mathrm{~N} \hat{\imath}=181000 \mathrm{~N}$

Buckle bp!"
(ex)
Fave $=$? $\overrightarrow{\bar{J}}=$?

Duckle मp!
(ex)
bot ${ }^{f} \leftarrow 0$ i
15 rims $\vec{F}_{\text {Fave }}=$?

Fave=? $\overrightarrow{\mathrm{J}}=$?

$$
v_{i}=20 \mathrm{~m} / \mathrm{s}
$$

$$
u_{f}=30 \mathrm{~m} / \mathrm{s}
$$

$$
\theta=45^{\circ}
$$

$$
m_{b \text { all }}=0.4 \mathrm{kq}
$$

$$
\vec{J}=\underset{\underset{v_{i}}{ }=-20 \hat{\imath}}{\vec{F}_{\text {ar }}} \Delta t=\Delta \vec{P} \quad \uparrow \hat{\jmath}
$$

$$
\Delta_{t}=0.01 \mathrm{~s}
$$

$$
\vec{F}_{\text {Fave }}(0.01)=0.4(15 \sqrt{2} \hat{\imath}+15 \sqrt{2} \hat{\jmath}-(-20 \hat{\imath}))
$$

Monentorn Couservation in Collisons

$$
\begin{array}{cc}
\begin{array}{c}
\text { impulse on } \\
\text { 2ud }
\end{array} & \begin{array}{c}
\text { inpule } \\
\text { ist } \\
\text { sit }
\end{array} \\
\Delta \vec{P}_{2} & +\Delta P_{1}=0
\end{array}
$$

$$
\sum \vec{F} \neq F_{2} \equiv \text { wom. is NOT }
$$

cousered.
ex Recol of a Rifle collision \equiv explosion

$$
\begin{aligned}
& m_{\text {Bullet }}=5 g r \\
& m_{r} \text { ple }=3 \mathrm{~kg} \\
& v_{B F}=300 \mathrm{v} / \mathrm{s} \\
& v_{R F}=?
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{i}{\sum} \vec{P}_{i}=\sum \vec{P}_{f} \\
& \vec{m}_{R} \vec{v}_{R i}+m_{B} \vec{v}_{B i}=m_{B} \vec{v}_{B F}+m_{R} \vec{v}_{R F} \\
& \stackrel{\downarrow}{0}+\stackrel{b}{0}
\end{aligned}
$$

$$
\rightarrow+\hat{\imath}
$$

b) what's The
final Kivetic Emouy

$$
\vec{v}_{R C}=-\frac{1.5 \hat{\imath}}{3}=-0.5 \hat{\imath} \mathrm{~m} / \mathrm{s}
$$

of Bullet \& Rifls
$2 \mathrm{~m} / \mathrm{s}$

$$
\text { (A) } \rightarrow 2 \mathrm{~m} / \mathrm{s}
$$

$$
\varepsilon \stackrel{\rightharpoonup}{P}_{i}=\Sigma \stackrel{\rightharpoonup}{P}_{f}
$$

$$
\begin{aligned}
& m_{A}=0.5 \mathrm{~kg} \\
& m_{B}=0.3 \mathrm{~kg} \\
& \vec{v}_{A F}=?
\end{aligned}
$$

$$
\begin{aligned}
m_{A} \overrightarrow{v_{A i}}+m_{B} \vec{v}_{B_{1}} & =m_{A} \vec{v}_{A F}+m_{B} \vec{v}_{B F} \\
0.4 \hat{\imath}=0.5(2 \hat{\imath})+0.3(-2 \hat{\imath}) & =0.5 \vec{v}_{A F}+0.3(2 \hat{\imath}) \\
0.4 \hat{\imath} & =0.5 \overrightarrow{v_{A F}}+0.6 \hat{\imath} \\
& \vec{u}_{A F}=-\frac{0.2 \hat{\imath}}{0.5}=-0.4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\stackrel{0.4 \mathrm{~m} / \mathrm{s}}{\stackrel{\square}{\square}}
$$ in this collision?

$$
\frac{1}{2} m v^{2}=\frac{1}{2} \frac{-p^{2}}{\underline{v}^{2}} \frac{-m}{m}=\frac{1}{2} \frac{p^{2}}{m}=K
$$

$$
\begin{aligned}
& \text { Eurgy }=k+1)^{\text {coust }} \\
& k_{i}=\frac{1}{2}(0.5) 2^{2}+\frac{1}{2}(0.3) 2^{2} \\
& k_{f}=\frac{1}{2}(0.5)(0.4)^{2}+\frac{1}{2}(0.3)^{2^{2}}
\end{aligned}
$$

$$
\left(\frac{k_{f}-k_{i}}{k_{i}} \ngtr 100 \equiv \% \text { of eregy } \cos T\right)
$$

ex)

$$
\begin{aligned}
& \underset{20 \mathrm{~kg}}{ } \rightarrow 2 \mathrm{~m} / \mathrm{s} \\
& 20(2 \hat{\imath}) \\
& \tan ^{-1}\left(\frac{-0.83}{1.89}\right)
\end{aligned}
$$

$$
\left.\begin{array}{l}
12 \mathrm{~kg} \\
\frac{B}{e_{B i}}=0
\end{array}\right\}
$$

$$
\begin{aligned}
& \frac{1}{2} m_{R} v_{R F}^{2}=\frac{1}{2} 3(0.5)^{2}=0.375 \mathrm{~J} \quad \frac{1}{2} m_{B} v_{B F}^{2}=\frac{1}{2}(0.005)(300)^{2} \\
& K_{B}>K_{R} \\
& =225 \mathrm{~J}
\end{aligned}
$$

Elastric
Inelustic

$$
\sum K_{i}=\sum k_{F} \quad \sum k_{i} \neq \sum K_{f}
$$

enelustic collisions

inelastic!!

ELASTIC COLLISION 三 (must be stated in the question!)
|Auer on \vec{B}
sprivg is staripile. evogy daj
〔 Dew wh collision

(1) \rightarrow (2) P is consued
what's Be
Bullet's initral

$$
K \text { is NOT }
$$

(2) \rightarrow (3)
total eogy is conserved
ulocity?
(2) \rightarrow (3)

$$
\begin{array}{r}
\sum E_{i}=\sum \bar{E}_{f} \\
k_{i}+b_{i}=k_{f}+v_{f} \\
\frac{1}{2}\left(m_{B}+m_{w}\right){v_{f}^{2}}^{2} v=0+ \\
Q_{B i}=\frac{m_{B}+m_{w}}{m_{B}} \sqrt{2 g h}
\end{array}
$$

$$
\begin{gathered}
k_{i}+b_{i}=k_{f}+v_{f} \\
\frac{1}{2}\left(m_{B}+m_{\omega}\right) v_{f}^{2}+v=0+\left(m_{B}+m_{\omega}\right) g h \Rightarrow v_{f}^{2}=2 g h
\end{gathered}
$$

$$
\begin{gathered}
m_{B}=5 g r \quad m_{w}=2 \mathrm{~kg} \\
h=3 \mathrm{~cm} \\
v_{B i}=\left(\frac{2.005}{0.005}\right) \sqrt{2(9.8)(0.03)}
\end{gathered}
$$

$$
\begin{aligned}
& \begin{array}{c}
\left.\begin{array}{c}
m_{B} v_{B i}+m_{\omega} v_{\omega i}=\left(m_{B}+m_{\omega}\right) v_{f} \\
v_{0}
\end{array}\right\} * m_{B} l_{B i}=\left(m_{B}+m_{\omega}\right) u_{f} \\
\text { at }{ }^{\text {rat }}
\end{array} \\
& \sum E_{i}=\sum \overline{E f}_{f}
\end{aligned}
$$

$$
v_{B i}=\left(\frac{2.005}{0.005}\right) \sqrt{2}(9.8)(0.03)
$$

How much every is $\cos t$?

$$
\begin{array}{rlrl}
k_{i}=\frac{1}{2} m_{B} v_{B i}^{2} & =\frac{1}{2}(0.005)(307)^{2} & & =307 \mathrm{~m} / \mathrm{s} \\
& =236 \mathrm{~J} & l_{f}=\sqrt{2 g h}=0.7 \\
k_{f}=\frac{1}{2}\left(m_{B}+m_{\omega}\right) v_{f}^{2} & \left.=\left(m_{B}+m_{\omega}\right) g h=1\right)_{f}=0.59 \mathrm{~J} \simeq 0.6 \mathrm{~J} \\
\frac{\Delta k}{k_{i}}=\frac{236-0.6}{236} & =0.997 ; & 99.7 \% \text { is } 105 \mathrm{~T}
\end{array}
$$

* where did the every go?

ELASTIC COLLISION

$$
m_{A} m_{B} v_{A i} v_{B I} v_{A F} v_{B r} \Rightarrow G_{\text {parvecturs }}
$$

$$
\begin{gathered}
W_{f}=-f_{q}^{d}=(0.6-236) \mathrm{J} \\
d=10 \mathrm{~cm} \\
f=2354 \mathrm{~N}
\end{gathered}
$$

1 dineusinal elastic collision

$\stackrel{\rightharpoonup}{\text { Q af }_{\text {a }}}$

$$
\begin{aligned}
& \sum \vec{P}_{i}=\sum \vec{p}_{t} \\
& \sum k_{i}=\sum k_{F} \\
& m_{A} \vec{u}_{A i}+u_{B B} \vec{u}_{B i}=u_{A} \vec{u}_{A C}+u_{B B} \vec{v}_{B t} \\
& \frac{u_{A} u_{A i}^{2}}{2}+\frac{u_{B} u_{B i}^{2}}{2}=\frac{u_{A} u_{A t}^{2}}{2}+\frac{u_{B} u_{B t}^{2}}{2}
\end{aligned}
$$

$$
\text { if } m_{A}=m_{B}=? \quad U_{A F}=\frac{m-m}{2 m} v_{A L}=0 \quad U_{B F}=\frac{2 m}{m+m} u_{A i}=U_{A i}
$$

${ }^{\text {ist case }}$

$$
\underset{v}{m} 0 \left\lvert\, \quad \begin{array}{ll}
m & 0 \\
0 & 0
\end{array}\right.
$$

3rdcase wall CM_{B}
$(A) \rightarrow v$

$$
O \rightarrow v_{A F} \quad O \rightarrow v_{B F}
$$

$$
v_{A F}=\frac{m_{A}-m_{B}}{m_{A}+w_{B}} v ; \quad v_{B F}=\frac{2 m_{A}}{m_{A}+m_{B}} v
$$

里
$A \rightarrow \theta_{H_{i}}$
$\mathcal{O} Q_{a i}$

$$
\begin{aligned}
& v_{A i} \neq v_{A i} \\
& v_{A i}^{\prime}=v_{A i}-v_{B i}
\end{aligned}
$$

$(A \rightarrow v_{A i}^{\prime} \underbrace{\infty}_{v_{B i=0}}$

$$
v_{A F}^{\prime}=\frac{m_{A}-w_{B}}{w_{A}+u_{B}} v_{A-i}^{\prime} ; \quad v_{B F}^{\prime}=\frac{2 u_{A}}{u_{A}+w_{B}} v_{A i}^{\prime}
$$

2 dim. dastic collision

$$
m_{A} l_{A i} \hat{\jmath}+0_{i} \hat{i}=m_{A} l_{A F} \cos \alpha \hat{1}+m_{B} v_{B F} \cos \hat{\beta} \hat{\imath} \quad 2 \text { eqn. }
$$

$$
m_{A}=0.5 \mathrm{~kg} \quad v_{B i}=0
$$

$$
u_{B}=0.3 \mathrm{~kg} \quad v_{A i}=4 \mathrm{~m} / \mathrm{s} \quad \quad_{A F}=2 \mathrm{~m} / \mathrm{s}
$$

lebt?
(1) $(0.5) 4 \hat{i}=\left[(0.5) 2 \cos \alpha+0.3 v_{\text {Bt }} \cos \beta\right] \hat{i}$
(2) $\theta \hat{j}=\left[(0.5)(2) \sin \alpha-(0.3) \theta_{B f} \sin \beta\right] \hat{j}$
(3) $(0.5) 4^{2}=(0.5) 2^{2}+(0.3) \theta_{B F}^{2}$
(1) $2=\cos \alpha+0.3 v_{B f} \cos 3$
(2) $\quad \sin \alpha=0.3 \theta_{B f} \sin \beta$
(3)

GENERAL FORMIIA for α

$$
\left.\begin{array}{r}
m_{A} \theta_{A i} \hat{\jmath}+\hat{0} \hat{\jmath}=\quad m_{A} \theta_{A F} \cos \alpha \hat{\imath}+m_{B} \theta_{B F} \cos \beta \hat{\imath} \\
m_{A} \theta_{A F} \sin \alpha \hat{j}-m_{B} l_{B F} \sin \beta \hat{\jmath}
\end{array}\right\} 2 \text { cqn. }
$$

$$
\begin{aligned}
& \frac{6}{0.3}=v_{B K}^{2} \quad \Rightarrow v_{B F}=\sqrt{20} \mathrm{~m} / \mathrm{s} \\
& 2=\quad \cos \alpha+0.3 \sqrt{20} \cos \beta \\
& \sin \alpha=0.3 \sqrt{20} \sin \beta \\
& \sin ^{2} \beta+\cos ^{2} \beta=1 \\
& \frac{\sin ^{2} \alpha}{0.3^{2}(20)}+\frac{(2-\cos \alpha)^{2}}{0.3^{2}(20)}=1 \Rightarrow \frac{\sin ^{2} \alpha+4+\cos ^{2} \alpha-4 \cos \alpha}{0.3^{2}(20)}=1 \\
& 5-4 \cos \alpha=0.3^{2}(20) \\
& \cos \alpha=\frac{5-0.3^{2}(20)}{4} \\
& =\frac{5-1.8}{4}=\frac{3.2}{4} \\
& \beta=? \quad \sin \alpha=0.3 \sqrt{20} \sin \beta \\
& \frac{\sin \left(36 . q^{\circ}\right)}{0.6}=\beta=\sin ^{-1}\left(\frac{0.6}{0.3 \sqrt{20}}\right)=\sin ^{-1}\left(\frac{2}{\sqrt{20}}\right)=\frac{26.6^{\circ}}{\bar{\beta}}
\end{aligned}
$$

$$
\begin{aligned}
& \sum \bar{p}_{i}=\sum \bar{r}_{f} \quad \gamma \text { pasact: } \\
& \left.\begin{array}{rl}
\operatorname{man}_{A} l_{A i} \hat{\jmath}+0 \hat{\jmath}
\end{array} \quad=\begin{array}{r}
m_{A} l_{A F} \cos \alpha \hat{\imath}+m_{B} \theta_{B F} \cos \hat{\jmath} \\
m_{A} l_{A F} \sin \alpha \hat{\jmath}-m_{B} l_{B F} \sin \beta \hat{j}
\end{array}\right\} 2 \text { can. } \\
& \frac{u_{K} u_{A i}^{2}}{x}+0 \quad=\frac{u_{B} u_{A P}^{2}}{\pi}+\frac{u_{B} \theta_{B A}^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{u_{K} u_{\pi i}^{2}}{2}+0=\frac{u_{B} u_{A P}^{2}}{\pi}+\frac{u_{B} v_{B 1}^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \cos ^{2} \beta+\sin ^{2} \beta=1 \\
& \frac{m_{A}^{2}}{m_{B}^{2} v_{B P}^{2}}\left[v_{A i}^{2}+v_{A P}^{2} \cos ^{2} \alpha-2 v_{A i} v_{A F} \cos \alpha\right]+\frac{u_{A}^{2}}{n_{B}^{2} \theta_{B P}^{2}}\left[v_{A P^{2}} \sin ^{2} \alpha\right]=1 \\
& \frac{m_{A}^{2}}{m_{B}^{2} v_{B F^{2}}}[v_{v_{A i^{2}}^{2}}^{v_{A F}}+\underbrace{}_{A F^{2} \cos ^{2} \alpha+v_{A F^{2}} \sin ^{2} \alpha}-2 v_{A i} v_{A F} \cos \alpha]=1 \\
& \left(\frac{m_{A}{ }^{2}}{m_{B}{ }^{2} v_{B F^{2}}}\right)\left[u_{A i}{ }^{2}+v_{A F}{ }^{2}-2 v_{A i} v_{A F} \cos \alpha\right]=1 \\
& C^{2}\left(v_{A i}{ }^{2}+v_{A F}{ }^{2}-2 v_{A i} v_{A F} \cos \alpha\right)=1 \\
& c^{2}\left(v_{A i^{2}}+v_{A F}{ }^{2}\right)-1=2 c^{2} v_{A i} v_{A F} \cos \alpha \\
& \alpha=\cos ^{-1}\left(\frac{c^{2}\left(v_{A i}^{2}+v_{A F}^{2}\right)-1}{2 c^{2} v_{A i} v_{A F}}\right)\left\{\begin{array}{l}
c=\frac{m_{A}}{m_{B} v_{B F}} \\
v_{B F}=\sqrt{\frac{m_{A}}{m_{B}}\left(v_{A i}^{2}-v_{A F}{ }^{2}\right)}
\end{array}\right. \\
& \not * \\
& \begin{array}{l}
m_{A} v_{A i}=m_{A} v_{A F} \cos \alpha+n_{B} v_{B F} \cos \beta \\
\cos \beta=\frac{m_{A} v_{A i}-m_{A} v_{A F} \cos \alpha}{m_{B} v_{B F}}=\frac{m_{A A} v_{A i}-m_{A} v_{A F}\left(\frac{c^{2}\left(v_{A i}^{2}+v_{A F}^{2}\right)-1}{2 c^{2} v v_{A i} v_{A+}}\right)}{m_{B} v_{B F}}=\frac{m_{A} v_{A i}-m_{A v_{A F}\left(v_{A A}^{2}\left(v_{A i}^{2}+v_{A F}^{2}\right)-m_{B}^{2} v_{A}^{2}\right)}^{2 m_{A}^{2} v_{A i} v_{A F}}}{m_{B B} v_{B F}}
\end{array} \\
& \cos \beta=\frac{2 m_{A}^{3} v_{A i}^{2} v_{A F}-m_{A}^{3} v_{A F}^{3}-m_{A}^{3} v_{A 1}^{2} v_{A F}+u_{A} m_{B}^{2} v_{A F} v_{B A}^{2}}{2 m_{A}^{2} v_{A i} v_{A F} m_{B} v_{B F}}=\frac{m_{A}^{3} v_{A i}^{2} v_{A F}+w_{A} m_{B}^{2} v_{A F} v_{B F}^{2}-m_{A}^{3} v_{A F}^{3}}{2 m_{A}^{2} v_{A i} v_{A F} v_{B B} v_{B F}} \\
& \beta=\cos ^{-1}\left(\frac{m_{A}^{2} v_{A i}^{2} v_{A F}+m_{B}^{2} v_{A F} v_{B F}^{2}-m_{A}^{2} v_{A F}^{3}}{2 v_{A} v_{A i} v_{A F} m_{B} v_{B F}}\right)\left\{; v_{B F}=\sqrt{\frac{m_{A}}{m_{B}}\left(v_{A i}^{2}-v_{A F}^{2}\right)}\right. \\
& \beta=\cos ^{-1}\left(\frac{0.5^{2}\left(4^{2}\right) 2+0.3^{2} 2(20)-0.5^{2} 2^{3}}{2(0.5) 4(2)(0.3) \sqrt{20}}\right)=\cos ^{-1}\left(\frac{48 / 5}{2.4 \sqrt{20}}\right)=\cos ^{-1}\left(\frac{20}{5 \sqrt{20}}\right)=\cos ^{-1}\left(\frac{4}{\sqrt{20}}\right) \\
& =\cos ^{-1}\left(\frac{2}{\sqrt{5}}\right)=26.56^{\circ} \simeq 27^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& u_{\text {SF }}=\sqrt{\frac{0.5}{0.3}\left(4^{2}-2^{2}\right)}=\sqrt{\frac{6}{0.3}}=\sqrt{20} \mathrm{w} / \mathrm{s} \\
& \begin{aligned}
C=\frac{0.5}{0.3 \sqrt{20}} \Rightarrow c^{2}=\frac{25}{9(20)}=\frac{5}{36} \quad \alpha & =\cos ^{-1}\left(\frac{\frac{5}{36}\left(4^{2}+2^{2}\right)-1}{(2) \frac{5}{36}(4)(2)}\right)=\cos ^{-1}\left(\frac{64 / 36}{80 / 36}\right) \\
& =\cos ^{-1}(8 / 10)=36.9^{\circ}
\end{aligned}
\end{aligned}
$$

ROCKET PROPILSION:

$$
\begin{aligned}
& \sin \text { (fuel) }\left\{V-v_{\text {ex }} v+\Delta v\right. \text { foel is exhousted lejected wita Uex } \\
& \rightarrow \theta \quad \underset{\Delta m}{\vec{\square}} \\
& \rightarrow \theta+\Delta v \text { vebaity w.r.t. the racket. } \\
& i \\
& f \\
& \sum \vec{p}_{i}=\sum \vec{p}_{f} \quad \rightarrow v+\Delta v \\
& (M+s u) v=M(v+\Delta v)+m\left(v-v_{\text {ex }}\right) \\
& M v+\Delta m v=M v+M \Delta v+\Delta m v-\Delta m v_{e x}
\end{aligned}
$$

$M \Delta v=+\Delta m l_{\text {ex }} \quad\left(\begin{array}{l}M=\text { nass of Ner rocket body } \\ \Delta m=n\end{array}\right.$
M m are related.

$$
\begin{gathered}
\Delta m=n \quad n \text { 'fuel } \\
\Delta v=\text { gain in serelocty } \\
v_{e x}=\text { exhaust velocihy } \\
\Delta m=-\Delta M \\
1 \mathrm{~kg} \\
\Delta M \\
M \Delta v=-1 \mathrm{~kg} \\
M m v_{\text {ex }}=-\Delta M v_{e x}
\end{gathered}
$$

$$
\begin{aligned}
& M_{T}=M_{\text {body }}+M_{\text {fuel }} \\
& 1000 \mathrm{~kg}=200 \mathrm{~kg}+800 \mathrm{~kg} \\
& \frac{M_{T}}{1000}+\frac{\Delta m \text { fuel }}{} \\
& 999 L-1 \quad+1 \mathrm{~kg} \\
& \Delta M=-1 \mathrm{~kg}
\end{aligned}
$$

$$
\begin{aligned}
& M \Delta v=-\left.\Delta M v_{\text {ex }}\right|_{*} ^{*} \\
& M d v=-V_{\text {ex }} d M \\
& \int^{f}-\frac{d v}{v_{x}}=\int^{f} \frac{d m}{m}= \\
& \frac{1}{\Delta t}(m \Delta v)=-v_{\text {ex }} \frac{\Delta m}{\Delta t} \\
& \vec{F} \equiv \frac{\Delta \vec{p}}{\Delta t}=-\vec{v}_{e x} \frac{\Delta M}{\Delta t} \\
& \frac{1}{v_{e x}}\left(-\left.\Delta v\right|_{v_{i}} ^{v_{t}}=[\ln M]_{M_{i}}^{\mu_{f}}\right. \\
& \frac{1}{v_{\text {ex }}}\left(v_{i}-v_{f}\right)=\ln m_{f}-\ln m_{i}=\ln \frac{m_{f}}{\omega_{i}} \\
& v_{f}-v_{i}=v_{e x} \ln \frac{m_{i}}{m_{f}} \\
& \mu_{a}=\vec{F}=-\vec{v}_{\text {ex }} \frac{\Delta M}{\Delta t}=\mu_{a} \\
& \text { Force onthe rockex } \\
& \begin{array}{l}
\text { the roclect } \\
\mathrm{O}_{f}
\end{array} \mathrm{I}_{i}+{V_{e_{x}}}^{\ln \frac{\mu_{i}}{m_{f}}} \\
& \dagger \quad u(t)=u_{0}+v_{c_{x}} \ln \frac{u_{0}}{m(t)} \\
& \frac{d u}{d t}=a=\quad \frac{d m}{d t} \equiv \text { know this!! } \\
& P=u c \\
& \frac{d P}{d t}=F=\frac{d w}{d t} v+\frac{m d v}{d t}
\end{aligned}
$$

velocitiy
ex) A rockel eicets

$$
\frac{-}{d t}=a=\frac{d m}{d t} \equiv \text { know this!! }
$$

ex) A rocket ejects fuel in the $1^{\text {st }}$ second i it ejects its $\frac{1}{120}$ of its thitial mas at a speed of $2400 \mathrm{~m} / \mathrm{s}$.
what's the accelertin of he socket?

$$
\begin{aligned}
F & =\frac{d M}{d t} v_{e x}=M a \Rightarrow \\
& =\frac{\left(m_{0} / 120\right)}{1_{5}} 2400=M_{0} a \quad a=\frac{21000}{120}=20 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

b) If $\theta_{i}=0$ and $\frac{3}{4}$ ot the mas of the rocket is fuel. all the fuel is consed at a constant rate in 90 seconds.

$$
\begin{aligned}
& v_{f=?} \quad v_{f}=l_{i}+l_{e x} \ln \frac{m_{0}}{\left(\frac{d m}{d t}=c o n s t\right)} ; m_{f}=m_{0}-\frac{3}{4} m_{0} \\
& v_{f}=0+2400 \ln 4=3327 \mathrm{~m} / \mathrm{s} \text { @ } q_{v_{s}}
\end{aligned}
$$

c) of $M=1000 \mathrm{~kg}$; whats force on the socket for avs.

$$
\begin{aligned}
& \vec{F}= \frac{d m}{d t} \vec{l}_{e x}=\frac{\Delta m}{\Delta t} \vec{u}_{e x}=\frac{m_{f}-m_{i}}{t_{f}-t_{i}}{\overrightarrow{l_{e x}}}=\frac{\frac{1000}{4}-1000}{90-0} 2400 \\
&=\frac{-750}{90} 2400 \hat{\imath}=-20000 N=-20 k N \hat{\imath} \\
& \hat{\imath} \in \underset{\substack{(t) t}}{ }
\end{aligned}
$$

Fire hose
water

$$
\begin{aligned}
& F=\frac{d m}{d t} d e_{x} \\
& F=\left[\frac{k g}{s}\right. \\
& \left.\left.\frac{m}{s}\right]=\left[\lg \frac{m}{\delta^{2}}\right]=d\right]
\end{aligned}
$$

ex) if water is exhausted at $3600 \frac{\mathrm{~L}}{\mathrm{~min}}$ from a fie hose fore applied on the hose 600 min . tex $=$?

$$
\begin{aligned}
F & =\frac{d M}{d t} v_{e x} & \frac{3600 \mathrm{~L}}{60 \mathrm{~s}} & { }^{1 \mathrm{kq}} \\
G \theta 0 & =(60) v_{\text {ex }} & & =\frac{3600 \mathrm{~kg}}{60 \mathrm{~s}}=60 \frac{\mathrm{~kg}}{\mathrm{~s}}
\end{aligned}
$$

$$
\left\{V_{e x}=10 \mathrm{~m} / \mathrm{s}\right\}
$$

CENTER Of mass

local

$$
\begin{aligned}
& \begin{array}{l}
\text { location } \\
\text { of } \\
\text { center of } \\
\text { nos }
\end{array}
\end{aligned} \stackrel{\rightharpoonup}{r}_{c_{m}}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}+\cdots}{\left.m_{1}+m_{2 t} \ldots \cdot\right\} \text { total }} \begin{aligned}
\text { vas }
\end{aligned}=m_{T}
$$

$$
M_{T} \vec{r}_{r \ldots}=m_{P} \vec{r}_{1}+m_{1} \vec{r}_{-}+\ldots
$$

 nos

$$
m_{1}+m_{2} t \cdots\left\{\begin{array}{l}
\text { total } \\
\text { vas }
\end{array}=m_{T}\right.
$$

$$
m_{T} \stackrel{\rightharpoonup}{r}_{c m}=m_{r_{r}} \stackrel{\rightharpoonup}{r}_{1}+m_{2} \stackrel{\rightharpoonup}{r}_{2}+\cdots
$$

$$
\left[\begin{array}{l}
m_{T} \vec{v}_{c m} \\
r_{0} l_{a l}
\end{array}=\sum m_{i} \vec{v}_{i}\right]
$$

total $=$ additurest nom. of the
little pieces.
If $\sum \vec{F}$ external on the system is $2 E R O \Rightarrow \sum \vec{P}=$ constant

$$
m_{\tau} \vec{v}_{c m}=\sum m_{i} \vec{v}_{i}
$$

$$
\begin{array}{cc}
t=0 & t>0 \\
i & f \\
\sum \vec{p}_{i} & =\sum_{i \vec{p}_{f}}
\end{array}
$$

ex

$$
\begin{aligned}
& \text { list part } 450 \mathrm{~m} / \mathrm{s} \hat{j} \\
& \text { Ind }
\end{aligned}
$$

and " $2 \mathrm{kom} / \mathrm{s}$ to West
 $a_{3}=$?

$$
\begin{gathered}
\sum \vec{P}_{i}=3 m 300 \hat{\jmath}=m 650 \hat{\jmath}+m(-260 \hat{\imath})+m \vec{v}_{3} \\
\vec{v}_{3}=240 \hat{\imath}+450 \hat{\jmath} \\
v_{z}=\sqrt{450^{2}+240^{2}} \\
\theta=\tan ^{-1}\left(\frac{410}{240}\right) \cdots
\end{gathered}
$$

James (mass 90.0 kg) and Ramon (mass 60.0 kg) are 20.0 m apart on a frozen pond. Midway between them is a mug of their favorite beverage. They pull on the ends of a light rope stretched between them. When James has moved 6.0 m toward the mug, how far and in what direction has Ramon moved?

$$
\begin{gathered}
\sum \vec{F}_{e x t}=0 \quad \sum \vec{P}_{c m}=m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2} \\
\forall \\
v_{c m}=0
\end{gathered}
$$

$$
\begin{aligned}
& \text { not }=X_{\text {cm }}=0 \quad \text { const }=\frac{60(10)+90(-10)}{60+90}=\frac{-300}{150} \\
& \text { win the cup first } 11
\end{aligned}
$$

$$
=-2 m
$$

$$
x_{\mathrm{cm}}=-2=\frac{90(-4)+60}{150} x \Rightarrow x=\frac{60}{60}=1 \mathrm{~m}
$$

* when Jakes moves 6 m towards cop, Ramon maces gm toward cup
8.106 .. A 45.0-kg woman stands up in a 60.0-kg canoe 5.00 m long. She walks from a point 1.00 m from one end to a point 1.00 m from the other end (Fig. P8.106). If you ignore resistance to motion of the canoe in the water, how far does the canoe move during this process?

Figure P8. 106

$$
X_{c m}=\frac{45(1)+2.5(60)}{105}
$$

$$
=1.86 \mathrm{~m}=\frac{45(1+\lambda)+60 y}{105}
$$

$$
2.25 \mathrm{~m} \text { canoe slips }
$$

$$
45(3)=60 \times \quad x \Rightarrow 2.25 \mathrm{~m} ? 1
$$

S between them; then the system is released from rest on a level, frictionless surface. The spring, which has negligible mass, is not fastened to either block and drops to the surface after it has expanded. Block B acquires a speed of $1.20 \mathrm{~m} / \mathrm{s}$. (a) What is the final speed of block A ? (b) How much potential energy was stored in the compressed spring?

Figure E8. 24

$$
E_{i}=E_{f}
$$

$\theta=0$

$$
\begin{gathered}
\sum \vec{P}_{i}=\sum \stackrel{\rightharpoonup}{P}_{f} \\
0=m_{A} \vec{v}_{A F}+m_{B} \vec{v}_{B F}
\end{gathered} \rightarrow \hat{\imath}
$$

$$
=1 \vec{V}_{A F}+3(1.2) \hat{\imath}
$$

$$
\frac{1}{2} m v_{A 1}^{2}+\frac{1}{2} m v_{B_{1}}^{2}+\frac{1}{2} k X^{2}=\frac{1}{2} m v_{A f}^{2}+\frac{1}{2} m v_{B+}^{2}+0 \quad \vec{v}_{A F}=-3.6 m / s \hat{\imath} \stackrel{\rightharpoonup}{l}_{v_{A F}}
$$

$$
0+0+U_{e l}=\frac{1}{2} 1(3.6)^{2}+\frac{1}{2} 3(1.2)^{2}=6(1.2)^{2} \sim 9 \mathrm{~J}
$$

$1 \quad E_{1}=E_{2}=E_{3}=E_{4}$

2

$$
0=P_{1}=P_{2}=P_{3}=P_{4}
$$

$$
\begin{aligned}
& \begin{cases}\sum \vec{P}_{i}=\overrightarrow{k P}_{c} & \frac{a}{b}=\frac{60}{45}=\frac{4}{3} \quad a+b=3 \\
0=0=m_{1} v_{1}+m_{2} v_{2} & \frac{b b}{3}+b=\frac{76}{3}=3=\frac{9}{7}\end{cases} \\
& 0=m_{1} \frac{x_{1}}{t}+w_{2} \frac{x_{2}}{t} \\
& m_{1} x_{1}=-m_{2} x_{2} \\
& \longrightarrow+x \\
& 45 x_{1}=-60 x_{2} \quad \frac{x_{1}}{x_{2}}=-\frac{4}{3} \\
& \text { L } \\
& \begin{array}{l}
x_{1}+x_{2}=3 \\
\frac{4}{3} x_{2}+x_{2}=3
\end{array} \\
& x_{1}=\frac{4}{3} x_{2}=\frac{4}{3} \frac{9}{7}=\frac{12}{7} \\
& x_{2}=\frac{9}{7}=1.26 \mathrm{~m}
\end{aligned}
$$

