Some Identities and Recurrence Relations on the Two Variables Bernoulli, Euler and Genocchi Polynomials


Creative Commons License

Kurt V., KURT B.

FILOMAT, vol.30, no.7, pp.1757-1765, 2016 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 30 Issue: 7
  • Publication Date: 2016
  • Doi Number: 10.2298/fil1607757k
  • Journal Name: FILOMAT
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.1757-1765
  • Keywords: Bernoulli numbers and polynomials, Euler polynomials and numbers, Genocchi polynomials and numbers, the Stirling numbers of second kind, q-exponential functions, Q-EXTENSIONS, APOSTOL-BERNOULLI, FORMULAS
  • Akdeniz University Affiliated: Yes

Abstract

Mahmudov in ([16], [17], [18]) introduced and investigated some q-extensions of the q-Bernoulli polynomials B-n,q((alpha)) (x,y) of order alpha, the q-Euler polynomials E-n,q((alpha)) (x, y) of order alpha and the q-Genocchi polynomials G(n,q)((alpha)) (x, y) of order alpha. In this article, we give some identities for the q-Bernoulli polynomials, q-Euler polynomials and q-Genocchi polynomials and the recurrence relation between these polynomials. We give a different form of the analogue of the Srivastava-Pinter addition theorem.