ELEKTRİK TESİSLERİNDE GÜVENLİK ÖDEV (Yararlanabileceğiniz Kaynaklar: **Schneider Electric /**Calculation of short circuits current—İsmail Kaşıkçı)

P1)

Problem 1. A transformer supplied by a network

A 20 kV network supplies a transformer T connected to a set of busbars by a cable L (see Fig. 30).

It is necessary to calculate, in compliance with IEC 60909, the initial short-circuit current $I_k^{"}$ and the peak short-circuit current I_p during a three-phase, then a phase-to-earth fault at point F1.

The following information is available:

- The impedance of the connection between the supply and transformer T may be neglected
- Cable L is made up of two parallel cables with three conductors each, where:

I = 4 m; 3 x 185 mm² AI Z_L = (0.208 + j0.068) Ω/km $R_{(0)L}$ = 4.23 R_L ; $X_{(0)L}$ = 1.21 X_L

■ The short-circuit at point F1 is assumed to be far from any generator

P2)

Problem 2. A power station unit

A power station unit S comprises a generator G and a transformer T with an on-load tap-changer (see Fig. 31).

It is necessary to calculate, in compliance with IEC 60909, the initial short-circuit current I"_k as well as the peak i_p and steady-state I_{kmax} short-circuit currents and the breaking short-circuit current I_b during a three-phase fault:

- Outside the power station unit on the busbars at point F1
- Inside the power station unit at point F2

The following information is available:

- The impedance of the connection between generator G and transformer T may be neglected
- The voltage factor c is assumed to be 1.1
- The minimum dead time t_{min} for calculation of I_b is 0.1 s
- Generator G is a cylindrical rotor generator (smooth poles)
- All loads connected to the busbars are passive

The single-pole short circuit current is to be calculated at the end of the line, considering the zero-sequence resistances. The data are given in Figure

In the electrical installation of a building the following data are known (Figure). Calculate all required short circuit currents and check the cut-off con-P4) ditions.

