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13.1 INTRODUCTION
The analysis thus far has been limited to dc networks, networks in

which the currents or voltages are fixed in magnitude except for tran-

sient effects. We will now turn our attention to the analysis of networks

in which the magnitude of the source varies in a set manner. Of partic-

ular interest is the time-varying voltage that is commercially available

in large quantities and is commonly called the ac voltage. (The letters

ac are an abbreviation for alternating current.) To be absolutely rigor-

ous, the terminology ac voltage or ac current is not sufficient to

describe the type of signal we will be analyzing. Each waveform of Fig.

13.1 is an alternating waveform available from commercial supplies.

The term alternating indicates only that the waveform alternates

between two prescribed levels in a set time sequence (Fig. 13.1). To be
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FIG. 13.1
Alternating waveforms.

absolutely correct, the term sinusoidal, square wave, or triangular must

also be applied. The pattern of particular interest is the sinusoidal ac

waveform for voltage of Fig. 13.1. Since this type of signal is encoun-

tered in the vast majority of instances, the abbreviated phrases ac volt-

age and ac current are commonly applied without confusion. For the

other patterns of Fig. 13.1, the descriptive term is always present, but

frequently the ac abbreviation is dropped, resulting in the designation

square-wave or triangular waveforms.

Sinusoidal AlternatingWaveforms
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One of the important reasons for concentrating on the sinusoidal ac

voltage is that it is the voltage generated by utilities throughout the

world. Other reasons include its application throughout electrical, elec-

tronic, communication, and industrial systems. In addition, the chapters

to follow will reveal that the waveform itself has a number of charac-

teristics that will result in a unique response when it is applied to the

basic electrical elements. The wide range of theorems and methods

introduced for dc networks will also be applied to sinusoidal ac sys-

tems. Although the application of sinusoidal signals will raise the

required math level, once the notation given in Chapter 14 is under-

stood, most of the concepts introduced in the dc chapters can be applied

to ac networks with a minimum of added difficulty.

The increasing number of computer systems used in the industrial

community requires, at the very least, a brief introduction to the termi-

nology employed with pulse waveforms and the response of some fun-

damental configurations to the application of such signals. Chapter 24

will serve such a purpose.

13.2 SINUSOIDAL ac VOLTAGECHARACTERISTICS AND DEFINITIONS
Generation
Sinusoidal ac voltages are available from a variety of sources. The

most common source is the typical home outlet, which provides an ac

voltage that originates at a power plant; such a power plant is most

commonly fueled by water power, oil, gas, or nuclear fusion. In each

case an ac generator (also called an alternator), as shown in Fig.

13.2(a), is the primary component in the energy-conversion process.

(e)(d)(c)(b)(a)

Inverter

FIG. 13.2
Various sources of ac power: (a) generating plant; (b) portable ac generator; 

(c) wind-power station; (d) solar panel; (e) function generator.

The power to the shaft developed by one of the energy sources listed

will turn a rotor (constructed of alternating magnetic poles) inside a

set of windings housed in the stator (the stationary part of the

dynamo) and will induce a voltage across the windings of the stator,

as defined by Faraday’s law,
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Through proper design of the generator, a sinusoidal ac voltage is

developed that can be transformed to higher levels for distribution

through the power lines to the consumer. For isolated locations where

power lines have not been installed, portable ac generators [Fig.

13.2(b)] are available that run on gasoline. As in the larger power

plants, however, an ac generator is an integral part of the design.

In an effort to conserve our natural resources, wind power and solar

energy are receiving increasing interest from various districts of the world

that have such energy sources available in level and duration that make the

conversion process viable. The turning propellers of the wind-power sta-

tion [Fig. 13.2(c)] are connected directly to the shaft of an ac generator to

provide the ac voltage described above. Through light energy absorbed in

the form of photons, solar cells [Fig. 13.2(d)] can generate dc voltages.

Through an electronic package called an inverter, the dc voltage can be

converted to one of a sinusoidal nature. Boats, recreational vehicles (RVs),

etc., make frequent use of the inversion process in isolated areas.

Sinusoidal ac voltages with characteristics that can be controlled by

the user are available from function generators, such as the one in Fig.

13.2(e). By setting the various switches and controlling the position of

the knobs on the face of the instrument, one can make available sinu-

soidal voltages of different peak values and different repetition rates.

The function generator plays an integral role in the investigation of the

variety of theorems, methods of analysis, and topics to be introduced in

the chapters that follow.

Definitions
The sinusoidal waveform of Fig. 13.3 with its additional notation will now

be used as a model in defining a few basic terms.These terms, however, can
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FIG. 13.3
Important parameters for a sinusoidal voltage.

be applied to any alternating waveform. It is important to remember as you

proceed through the various definitions that the vertical scaling is in volts

or amperes and the horizontal scaling is always in units of time.

Waveform: The path traced by a quantity, such as the voltage in

Fig. 13.3, plotted as a function of some variable such as time (as

above), position, degrees, radians, temperature, and so on.
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FIG. 13.4
Defining the cycle and period of a sinusoidal waveform.

Frequency ( f ): The number of cycles that occur in 1 s. The fre-

quency of the waveform of Fig. 13.5(a) is 1 cycle per second, and

for Fig. 13.5(b), 21⁄2 cycles per second. If a waveform of similar

shape had a period of 0.5 s [Fig. 13.5(c)], the frequency would be 2

cycles per second.

FIG. 13.5
Demonstrating the effect of a changing frequency on the period of a sinusoidal

waveform.

Instantaneous value: The magnitude of a waveform at any instant

of time; denoted by lowercase letters (e1, e2).

Peak amplitude: The maximum value of a waveform as measured

from its average, or mean, value, denoted by uppercase letters (such

as Em for sources of voltage and Vm for the voltage drop across a

load). For the waveform of Fig. 13.3, the average value is zero volts,

and Em is as defined by the figure.

Peak value: The maximum instantaneous value of a function as

measured from the zero-volt level. For the waveform of Fig. 13.3,

the peak amplitude and peak value are the same, since the average

value of the function is zero volts.

Peak-to-peak value: Denoted by Ep-p or Vp-p, the full voltage

between positive and negative peaks of the waveform, that is, the

sum of the magnitude of the positive and negative peaks.

Periodic waveform: A waveform that continually repeats itself

after the same time interval. The waveform of Fig. 13.3 is a periodic

waveform.

Period (T ): The time interval between successive repetitions of a

periodic waveform (the period T1 5 T2 5 T3 in Fig. 13.3), as long as

successive similar points of the periodic waveform are used in deter-

mining T.

Cycle: The portion of a waveform contained in one period of time.

The cycles within T1, T2, and T3 of Fig. 13.3 may appear different in

Fig. 13.4, but they are all bounded by one period of time and there-

fore satisfy the definition of a cycle.
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The unit of measure for frequency is the hertz (Hz), where

(13.1)

The unit hertz is derived from the surname of Heinrich Rudolph Hertz

(Fig. 13.6), who did original research in the area of alternating currents

and voltages and their effect on the basic R, L, and C elements. The fre-

quency standard for North America is 60 Hz, whereas for Europe it is

predominantly 50 Hz.

As with all standards, any variation from the norm will cause dif-

ficulties. In 1993, Berlin, Germany, received all its power from east-

ern plants, whose output frequency was varying between 50.03 and

51 Hz. The result was that clocks were gaining as much as 4 min-

utes a day. Alarms went off too soon, VCRs clicked off before the

end of the program, etc., requiring that clocks be continually reset. In

1994, however, when power was linked with the rest of Europe, the

precise standard of 50 Hz was reestablished and everyone was on

time again.

Using a log scale (described in detail in Chapter 23), a frequency

spectrum from 1 Hz to 1000 GHz can be scaled off on the same axis, as

shown in Fig. 13.7. A number of terms in the various spectrums are

probably familiar to the reader from everyday experiences. Note that the

audio range (human ear) extends from only 15 Hz to 20 kHz, but the

transmission of radio signals can occur between 3 kHz and 300 GHz.

The uniform process of defining the intervals of the radio-frequency

spectrum from VLF to EHF is quite evident from the length of the bars

in the figure (although keep in mind that it is a log scale, so the fre-

quencies encompassed within each segment are quite different). Other

frequencies of particular interest (TV, CB, microwave, etc.) are also

included for reference purposes. Although it is numerically easy to talk

about frequencies in the megahertz and gigahertz range, keep in mind

that a frequency of 100 MHz, for instance, represents a sinusoidal

waveform that passes through 100,000,000 cycles in only 1 s—an

incredible number when we compare it to the 60 Hz of our conventional

power sources. The new Pentium II chip manufactured by Intel can run

at speeds up to 450 MHz. Imagine a product able to handle 450,000,000

instructions per second—an incredible achievement. The new Pentium

IV chip manufactured by Intel can run at a speed of 1.5 GHz. Try to

imagine a product able to handle 1,500,000,000,000 instructions in just

1 s—an incredible achievement.

Since the frequency is inversely related to the period—that is, as one

increases, the other decreases by an equal amount—the two can be

related by the following equation:

f 5 Hz

T 5 seconds (s)
(13.2)

or (13.3)T 5 }
1

f
}

f 5 }
T

1
}

1 hertz (Hz) 5 1 cycle per second (c/s)

FIG. 13.6
Heinrich Rudolph Hertz.
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Spurred on by the earlier predictions of the English

physicist James Clerk Maxwell, Heinrich Hertz pro-

duced electromagnetic waves in his laboratory at the

Karlsruhe Polytechnic while in his early 30s. The

rudimentary transmitter and receiver were in es-

sence the first to broadcast and receive radio waves.

He was able to measure the wavelength of the

electromagnetic waves and confirmed that the ve-

locity of propagation is in the same order of magni-

tude as light. In addition, he demonstrated that the

reflective and refractive properties of electromag-

netic waves are the same as those for heat and light

waves. It was indeed unfortunate that such an inge-

nious, industrious individual should pass away at the

very early age of 37 due to a bone disease.
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FIG. 13.7
Areas of application for specific frequency bands.
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EXAMPLE 13.1 Find the period of a periodic waveform with a fre-

quency of

a. 60 Hz.

b. 1000 Hz.

Solutions:

a. T 5 5 > 0.01667 s or 16.67 ms

(a recurring value since 60 Hz is so prevalent)

b. T 5 5 5 1023 s 5 1 ms

EXAMPLE 13.2 Determine the frequency of the waveform of Fig.

13.8.

Solution: From the figure, T 5 (25 ms 2 5 ms) 5 20 ms, and

f 5 5 5 50 Hz

EXAMPLE 13.3 The oscilloscope is an instrument that will display

alternating waveforms such as those described above.A sinusoidal pattern

appears on the oscilloscope of Fig. 13.9 with the indicated vertical and

horizontal sensitivities. The vertical sensitivity defines the voltage associ-

ated with each vertical division of the display. Virtually all oscilloscope

screens are cut into a crosshatch pattern of lines separated by 1 cm in the

vertical and horizontal directions. The horizontal sensitivity defines the

time period associated with each horizontal division of the display.

For the pattern of Fig. 13.9 and the indicated sensitivities, determine

the period, frequency, and peak value of the waveform.

Solution: One cycle spans 4 divisions. The period is therefore

T 5 4 div.1 2 5 200 ms

and the frequency is

f 5 }
T

1
} 5 5 5 kHz

The vertical height above the horizontal axis encompasses 2 divisions.

Therefore,

Vm 5 2 div.1 2 5 0.2 V

Defined Polarities and Direction
In the following analysis, we will find it necessary to establish a set of

polarities for the sinusoidal ac voltage and a direction for the sinusoidal

ac current. In each case, the polarity and current direction will be for an

instant of time in the positive portion of the sinusoidal waveform. This

is shown in Fig. 13.10 with the symbols for the sinusoidal ac voltage

and current. A lowercase letter is employed for each to indicate that the

quantity is time dependent; that is, its magnitude will change with time.

0.1 V
}
div.

1
}}
200 3 1026 s

50 ms
}
div.

1
}}
20 3 1023 s

1
}
T

1
}
1000 Hz

1
}
f

1
}
60 Hz

1
}
f

0 t (ms)

10 V
e

5 15 25 35

FIG. 13.8
Example 13.2.

Vertical sensitivity  =  0.1 V/div.
Horizontal sensitivity  =  50 ms/div.m

FIG. 13.9
Example 13.3.
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FIG. 13.10
(a) Sinusoidal ac voltage sources; 

(b) sinusoidal current sources.
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The need for defining polarities and current direction will become quite

obvious when we consider multisource ac networks. Note in the last

sentence the absence of the term sinusoidal before the phrase ac net-

works. This phrase will be used to an increasing degree as we progress;

sinusoidal is to be understood unless otherwise indicated.

13.3 THE SINE WAVE
The terms defined in the previous section can be applied to any type of

periodic waveform, whether smooth or discontinuous. The sinusoidal

waveform is of particular importance, however, since it lends itself

readily to the mathematics and the physical phenomena associated with

electric circuits. Consider the power of the following statement:

The sinusoidal waveform is the only alternating waveform whose

shape is unaffected by the response characteristics of R, L, and C

elements.

In other words, if the voltage across (or current through) a resistor,

coil, or capacitor is sinusoidal in nature, the resulting current (or volt-

age, respectively) for each will also have sinusoidal characteristics, as

shown in Fig. 13.11. If a square wave or a triangular wave were

applied, such would not be the case.

The unit of measurement for the horizontal axis of Fig. 13.12 is the

degree. A second unit of measurement frequently used is the radian

(rad). It is defined by a quadrant of a circle such as in Fig. 13.13 where

the distance subtended on the circumference equals the radius of the

circle.

If we define x as the number of intervals of r (the radius) around the

circumference of the circle, then

C 5 2pr 5 x ⋅ r

and we find

x 5 2p

Therefore, there are 2p rad around a 360° circle, as shown in Fig.

13.14, and

(13.4)2p rad 5 360°

+

–

i

t
vR, L, or C

t

FIG. 13.11
The sine wave is the only alternating

waveform whose shape is not altered by the

response characteristics of a pure resistor,

inductor, or capacitor.

FIG. 13.12
Sine wave and cosine wave with the

horizontal axis in degrees.

r

r

57.296°

1 radian
r

r

57.296°

1 radian

57.296°

FIG. 13.13
Defining the radian.

FIG. 13.14
There are 2p radians in one full circle of 360°.
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with (13.5)

A number of electrical formulas contain a multiplier of p. For this

reason, it is sometimes preferable to measure angles in radians rather

than in degrees.

The quantity p is the ratio of the circumference of a circle to its

diameter.

p has been determined to an extended number of places primarily in

an attempt to see if a repetitive sequence of numbers appears. It does

not. A sampling of the effort appears below:

p 5 3.14159 26535 89793 23846 26433 . . .

Although the approximation p > 3.14 is often applied, all the calcula-

tions in this text will use the p function as provided on all scientific cal-

culators.

For 180° and 360°, the two units of measurement are related as

shown in Fig. 13.14. The conversion equations between the two are the

following:

Radians 5 1}18

p

0°
}2 3 (degrees) (13.6)

Degrees 5 1 2 3 (radians) (13.7)

Applying these equations, we find

90°: Radians 5 (90°) 5 rad

30°: Radians 5 (30°) 5 rad

rad: Degrees 5 1 2 5 60°

rad: Degrees 5 1 2 5 270°

Using the radian as the unit of measurement for the abscissa, we would

obtain a sine wave, as shown in Fig. 13.15.

It is of particular interest that the sinusoidal waveform can be

derived from the length of the vertical projection of a radius vector

rotating in a uniform circular motion about a fixed point. Starting as

shown in Fig. 13.16(a) and plotting the amplitude (above and below

zero) on the coordinates drawn to the right [Figs. 13.16(b) through (i)],

we will trace a complete sinusoidal waveform after the radius vector

has completed a 360° rotation about the center.

The velocity with which the radius vector rotates about the center,

called the angular velocity, can be determined from the following

equation:

Angular velocity 5 (13.8)
distance (degrees or radians)
}}}

time (seconds)

3p
}
2
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}
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FIG. 13.15
Plotting a sine wave versus radians.
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FIG. 13.16
Generating a sinusoidal waveform through the vertical projection of a 

rotating vector.
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Substituting into Eq. (13.8) and assigning the Greek letter omega (q)

to the angular velocity, we have

(13.9)

and (13.10)

Since q is typically provided in radians per second, the angle a

obtained using Eq. (13.10) is usually in radians. If a is required in

degrees, Equation (13.7) must be applied. The importance of remem-

bering the above will become obvious in the examples to follow.

In Fig. 13.16, the time required to complete one revolution is equal

to the period (T) of the sinusoidal waveform of Fig. 13.16(i). The radi-

ans subtended in this time interval are 2p. Substituting, we have

(rad/s) (13.11)

In words, this equation states that the smaller the period of the

sinusoidal waveform of Fig. 13.16(i), or the smaller the time interval

before one complete cycle is generated, the greater must be the angu-

lar velocity of the rotating radius vector. Certainly this statement

agrees with what we have learned thus far. We can now go one step

further and apply the fact that the frequency of the generated wave-

form is inversely related to the period of the waveform; that is, f 5

1/T. Thus,

(rad/s) (13.12)

This equation states that the higher the frequency of the generated

sinusoidal waveform, the higher must be the angular velocity. Equations

(13.11) and (13.12) are verified somewhat by Fig. 13.17, where for the

same radius vector, q 5 100 rad/s and 500 rad/s.

EXAMPLE 13.4 Determine the angular velocity of a sine wave hav-

ing a frequency of 60 Hz.

Solution:
q 5 2pf 5 (2p)(60 Hz) > 377 rad/s

(a recurring value due to 60-Hz predominance)

EXAMPLE 13.5 Determine the frequency and period of the sine wave

of Fig. 13.17(b).

Solution: Since q 5 2p/T,

T 5 5 5 5 12.57 ms

and f 5 5 5 79.58 Hz
1

}}
12.57 3 1023 s

1
}
T

2p rad
}
500 rad/s

2p rad
}
500 rad/s

2p
}
q

q 5 2pf

q 5 }
2

T

p
}

a 5 qt

q 5 }
a

t
}

(a)

(b)

T

α

T

Decreased ω, increased T,
decreased f

ω

Increased ω, increased T,
increased f

ω

α

ω  =  500 rad/sω

ω  =  100 rad/sω

FIG. 13.17
Demonstrating the effect of q on the 

frequency and period.
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EXAMPLE 13.6 Given q 5 200 rad/s, determine how long it will take

the sinusoidal waveform to pass through an angle of 90°.

Solution: Eq. (13.10): a 5 qt, and

t 5

However, a must be substituted as p/2 (5 90°) since q is in radians per

second:

t 5 5 5 s 5 7.85 ms

EXAMPLE 13.7 Find the angle through which a sinusoidal waveform

of 60 Hz will pass in a period of 5 ms.

Solution: Eq. (13.11): a 5 qt, or

a 5 2pft 5 (2p)(60 Hz)(5 3 1023s) 5 1.885 rad

If not careful, one might be tempted to interpret the answer as

1.885°. However,

a (°) 5 (1.885 rad) 5 108°

13.4 GENERAL FORMAT FOR THE SINUSOIDALVOLTAGE OR CURRENT
The basic mathematical format for the sinusoidal waveform is

(13.13)

where Am is the peak value of the waveform and a is the unit of mea-

sure for the horizontal axis, as shown in Fig. 13.18.

Am sin a

180°
}
p rad

p
}
400

p/2 rad
}
200 rad/s

a
}
q

a
}
q

FIG. 13.18
Basic sinusoidal function.

The equation a 5 qt states that the angle a through which the rotat-

ing vector of Fig. 13.16 will pass is determined by the angular velocity

of the rotating vector and the length of time the vector rotates. For

example, for a particular angular velocity (fixed q), the longer the

radius vector is permitted to rotate (that is, the greater the value of t),

the greater will be the number of degrees or radians through which the

vector will pass. Relating this statement to the sinusoidal waveform, for

a particular angular velocity, the longer the time, the greater the num-
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ber of cycles shown. For a fixed time interval, the greater the angular

velocity, the greater the number of cycles generated.

Due to Eq. (13.10), the general format of a sine wave can also be

written

(13.14)

with qt as the horizontal unit of measure.

For electrical quantities such as current and voltage, the general for-

mat is

i 5 Im sin qt 5 Im sin a

e 5 Em sin qt 5 Em sin a

where the capital letters with the subscript m represent the amplitude,

and the lowercase letters i and e represent the instantaneous value of

current or voltage, respectively, at any time t. This format is particularly

important since it presents the sinusoidal voltage or current as a func-

tion of time, which is the horizontal scale for the oscilloscope. Recall

that the horizontal sensitivity of a scope is in time per division and not

degrees per centimeter.

EXAMPLE 13.8 Given e 5 5 sin a, determine e at a 5 40° and a 5

0.8p .

Solution: For a 5 40°,

e 5 5 sin 40° 5 5(0.6428) 5 3.214 V

For a 5 0.8p,

a (°) 5 (0.8p) 5 144°

and e 5 5 sin 144° 5 5(0.5878) 5 2.939 V

The conversion to degrees will not be required for most modern-day

scientific calculators since they can perform the function directly. First, be

sure that the calculator is in the RAD mode. Then simply enter the radian

measure and use the appropriate trigonometric key (sin, cos, tan, etc.).

The angle at which a particular voltage level is attained can be

determined by rearranging the equation

e 5 Em sin a

in the following manner:

sin a 5

which can be written

(13.15)

Similarly, for a particular current level,

(13.16)

The function sin21 is available on all scientific calculators.

a 5 sin21
}
I

i

m

}

a 5 sin21
}
E

e

m

}

e
}
Em

180°
}

p

Am sin qt
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EXAMPLE 13.9
a. Determine the angle at which the magnitude of the sinusoidal func-

tion v 5 10 sin 377t is 4 V.

b. Determine the time at which the magnitude is attained.

Solutions:
a. Eq. (13.15):

a1 5 sin21
5 sin21

5 sin21 0.4 5 23.578°

However, Figure 13.19 reveals that the magnitude of 4 V (posi-

tive) will be attained at two points between 0° and 180°. The second

intersection is determined by

a2 5 180° 2 23.578° 5 156.422°

In general, therefore, keep in mind that Equations (13.15) and

(13.16) will provide an angle with a magnitude between 0° and 90°.

b. Eq. (13.10): a 5 qt, and so t 5 a /q. However, a must be in radians.

Thus,

a (rad) 5 (23.578°) 5 0.411 rad

and t1 5 5 5 1.09 ms

For the second intersection,

a (rad) 5 (156.422°) 5 2.73 rad

t2 5 5 5 7.24 ms

The sine wave can also be plotted against time on the horizontal

axis. The time period for each interval can be determined from t 5 a /q,

but the most direct route is simply to find the period T from T 5 1/f and

break it up into the required intervals. This latter technique will be

demonstrated in Example 13.10.

Before reviewing the example, take special note of the relative sim-

plicity of the mathematical equation that can represent a sinusoidal

waveform. Any alternating waveform whose characteristics differ from

those of the sine wave cannot be represented by a single term, but may

require two, four, six, or perhaps an infinite number of terms to be rep-

resented accurately. Additional description of nonsinusoidal waveforms

can be found in Chapter 25.

EXAMPLE 13.10 Sketch e 5 10 sin 314t with the abscissa

a. angle (a) in degrees.

b. angle (a) in radians.

c. time (t) in seconds.

Solutions:
a. See Fig 13.20. (Note that no calculations are required.)

b. See Fig. 13.21. (Once the relationship between degrees and radians

is understood, there is again no need for calculations.)

2.73 rad
}
377 rad/s

a
}
q

p
}
180°

0.411 rad
}}
377 rad/s

a
}
q

p
}
180°

4 V
}
10 V

v
}
Em

v (V)

4

1 90°

10

0

t1

2

t2

180° aaa

FIG. 13.19
Example 13.9.

FIG. 13.20
Example 13.10, horizontal axis in degrees.

FIG. 13.21
Example 13.10, horizontal axis in radians.
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c. 360°: T 5 5 5 20 ms

180°: 5 5 10 ms

90°: 5 5 5 ms

30°: 5 5 1.67 ms

See Fig. 13.22.

EXAMPLE 13.11 Given i 5 6 3 1023 sin 1000t, determine i at t 5

2 ms.

Solution:
a 5 qt 5 1000t 5 (1000 rad/s)(2 3 1023 s) 5 2 rad

a (°) 5 (2 rad) 5 114.59°

i 5 (6 3 1023)(sin 114.59°)

5 (6 mA)(0.9093) 5 5.46 mA

13.5 PHASE RELATIONS
Thus far, we have considered only sine waves that have maxima at p/2

and 3p/2, with a zero value at 0, p, and 2p, as shown in Fig. 13.21. If the

waveform is shifted to the right or left of 0°, the expression becomes

(13.17)

where v is the angle in degrees or radians that the waveform has been

shifted.

If the waveform passes through the horizontal axis with a positive-

going (increasing with time) slope before 0°, as shown in Fig. 13.23,

the expression is

(13.18)

At qt 5 a 5 0°, the magnitude is determined by Am sin v. If the wave-

form passes through the horizontal axis with a positive-going slope

after 0°, as shown in Fig. 13.24, the expression is

(13.19)

And at qt 5 a 5 0°, the magnitude is Am sin(2v), which, by a trigono-

metric identity, is 2Am sin v.

If the waveform crosses the horizontal axis with a positive-going slope

90° (p/2) sooner, as shown in Fig. 13.25, it is called a cosine wave; that is,

sin(qt 1 90°) 5 sin1qt 1 }
p

2
}2 5 cos qt (13.20)

Am sin(qt 2 v)

Am sin(qt 1 v)

Am sin(qt 6 v)

180°
}
p rad

20 ms
}

12

T
}
12

20 ms
}

4

T
}
4

20 ms
}

2

T
}
2

2p
}
314

2p
}
q

FIG. 13.22
Example 13.10, horizontal axis in

milliseconds.

u

(    –  )

Am

(2     –   )

a

Am sinu
p u

p     u

FIG. 13.23
Defining the phase shift for a sinusoidal 

function that crosses the horizontal axis with 

a positive slope before 0°.

v (p  + v)

Am

(2p  + v)

a– Am sin v

FIG. 13.24
Defining the phase shift for a sinusoidal 

function that crosses the horizontal axis with 

a positive slope after 0°.

0

Am

90°

cos a
sin a

p 2p

a

p
2

– p
2

p3
2

FIG. 13.25
Phase relationship between a sine wave and a

cosine wave.
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or sin qt 5 cos(qt 2 90°) 5 cos1qt 2 }
p

2
}2 (13.21)

The terms lead and lag are used to indicate the relationship

between two sinusoidal waveforms of the same frequency plotted on

the same set of axes. In Fig. 13.25, the cosine curve is said to lead

the sine curve by 90°, and the sine curve is said to lag the cosine

curve by 90°. The 90° is referred to as the phase angle between the

two waveforms. In language commonly applied, the waveforms are

out of phase by 90°. Note that the phase angle between the two

waveforms is measured between those two points on the horizontal

axis through which each passes with the same slope. If both wave-

forms cross the axis at the same point with the same slope, they are

in phase.

The geometric relationship between various forms of the sine and

cosine functions can be derived from Fig. 13.26. For instance, starting

at the sin a position, we find that cos a is an additional 90° in the coun-

terclockwise direction. Therefore, cos a 5 sin(a 1 90°). For 2sin a

we must travel 180° in the counterclockwise (or clockwise) direction so

that 2sin a 5 sin(a 6 180°), and so on, as listed below:

(13.22)

In addition, one should be aware that

(13.23)

If a sinusoidal expression should appear as

e 5 2Em sin qt

the negative sign is associated with the sine portion of the expression,

not the peak value Em. In other words, the expression, if not for conve-

nience, would be written

e 5 Em(2sin qt)

Since

2sin qt 5 sin(qt 6 180°)

the expression can also be written

e 5 Em sin(qt 6 180°)

revealing that a negative sign can be replaced by a 180° change in

phase angle (1 or 2); that is,

e 5 Em sin qt 5 Em sin(qt 1 180°)

5 Em sin(qt 2 180°)

A plot of each will clearly show their equivalence. There are, there-

fore, two correct mathematical representations for the functions.

sin(2a) 5 2sin a

cos(2a) 5 cos a

cos a 5 sin(a 1 90°)

sin a 5 cos(a 2 90°)

2sin a 5 sin(a 6 180°)

2cos a 5 sin(a 1 270°) 5 sin(a 2 90°)

etc.

+cos

–cos

+sin–sin

α

α α

α

FIG. 13.26
Graphic tool for finding the relationship

between specific sine and cosine functions.



PHASE RELATIONS  537

The phase relationship between two waveforms indicates which

one leads or lags, and by how many degrees or radians.

EXAMPLE 13.12 What is the phase relationship between the sinu-

soidal waveforms of each of the following sets?

a. v 5 10 sin(qt 1 30°)

i 5 5 sin(qt 1 70°)

b. i 5 15 sin(qt 1 60°)

v 5 10 sin(qt 2 20°)

c. i 5 2 cos(qt 1 10°)

v 5 3 sin(qt 2 10°)

d. i 5 2sin(qt 1 30°)

v 5 2 sin(qt 1 10°)

e. i 5 22 cos(qt 2 60°)

v 5 3 sin(qt 2 150°)

Solutions:
a. See Fig. 13.27.

i leads v by 40°, or v lags i by 40°.

v

30°40°

5

10

i

0
2

p
3
2

2 vt

70°

p

p

p

FIG. 13.27
Example 13.12; i leads v by 40°.

b. See Fig. 13.28.

i leads v by 80°, or v lags i by 80°.

10 15

i

v

2
–

2

p 3

2
p

2 vt

20°
80°

60°

0
p p p

FIG. 13.28
Example 13.12; i leads v by 80°.
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d. See Fig. 13.30.
Note

2sin(qt 1 30°) 5 sin(qt 1 30° 2 180°)

5 sin(qt 2 150°)

v leads i by 160°, or i lags v by 160°.

i

v2
3

10°

110°

2

0 p 3

2
p

2 vt

100°

p

2
––

p p p

FIG. 13.29
Example 13.12; i leads v by 110°.

2

1

2
– 3

2
p

p2

2

5

2
p

3
vt

10°
160°

200°
360°

0

i

v

150°

p

p

p

p

FIG. 13.30
Example 13.12; v leads i by 160°.

Or using
Note

2sin(qt 1 30°) 5 sin(qt 1 30° 1 180°)

5 sin(qt 1 210°)

i leads v by 200°, or v lags i by 200°.

e. See Fig. 13.31.
By choice

i 5 22 cos(qt 2 60°) 5 2 cos(qt 2 60° 2 180°)

5 2 cos(qt 2 240°)

2
–

3

2
p

p

2

2 5
2
p 3

vt
0

i

v

150°

2
3

p p p p

FIG. 13.31
Example 13.12; v and i are in phase.

c. See Fig. 13.29.

i 5 2 cos(qt 1 10°) 5 2 sin(qt 1 10° 1 90°)

5 2 sin(qt 1 100°)

i leads v by 110°, or v lags i by 110°.



AVERAGE VALUE  539

However, cos a 5 sin(a 1 90°)

so that 2 cos(qt 2 240°) 5 2 sin(qt 2 240° 1 90°)

5 2 sin(qt 2 150°)

v and i are in phase.

Phase Measurements
The hookup procedure for using an oscilloscope to measure phase

angles is covered in detail in Section 15.13. However, the equation for

determining the phase angle can be introduced using Fig. 13.32. First,

note that each sinusoidal function has the same frequency, permitting

the use of either waveform to determine the period. For the waveform

chosen in Fig. 13.32, the period encompasses 5 divisions at 0.2 ms/div.

The phase shift between the waveforms (irrespective of which is lead-

ing or lagging) is 2 divisions. Since the full period represents a cycle of

360°, the following ratio [from which Equation (13.24) can be derived]

can be formed:

5

and v 5 3 360° (13.24)

Substituting into Eq. (13.24) will result in

v 5 3 360° 5 144°

and e leads i by 144°.

13.6 AVERAGE VALUE
Even though the concept of the average value is an important one in

most technical fields, its true meaning is often misunderstood. In Fig.

13.33(a), for example, the average height of the sand may be required

to determine the volume of sand available. The average height of the

sand is that height obtained if the distance from one end to the other

is maintained while the sand is leveled off, as shown in Fig. 13.33(b).

The area under the mound of Fig. 13.33(a) will then equal the area

under the rectangular shape of Fig. 13.33(b) as determined by A 5

b 3 h. Of course, the depth (into the page) of the sand must be the

same for Fig. 13.33(a) and (b) for the preceding conclusions to have

any meaning.

In Fig. 13.33 the distance was measured from one end to the other.

In Fig. 13.34(a) the distance extends beyond the end of the original pile

of Fig. 13.33. The situation could be one where a landscaper would like

to know the average height of the sand if spread out over a distance

such as defined in Fig. 13.34(a). The result of an increased distance is

as shown in Fig. 13.34(b). The average height has decreased compared

to Fig. 13.33. Quite obviously, therefore, the longer the distance, the

lower is the average value.

(2 div.)
}
(5 div.)

phase shift (no. of div.)
}}}

T (no. of div.)

v
}}}
phase shift (no. of div.)

360°
}}
T (no. of div.) Vertical sensitivity = 2 V/div.

Horizontal sensitivity = 0.2 ms/div.

T

θ

e
i

FIG. 13.32
Finding the phase angle between waveforms

using a dual-trace oscilloscope.

Height

Distance

Sand

(a)

Height

Average height

Sand

Same
distance

(b)

FIG. 13.33
Defining average value.
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If the distance parameter includes a depression, as shown in Fig.

13.35(a), some of the sand will be used to fill the depression, resulting

in an even lower average value for the landscaper, as shown in Fig.

13.35(b). For a sinusoidal waveform, the depression would have the

same shape as the mound of sand (over one full cycle), resulting in an

average value at ground level (or zero volts for a sinusoidal voltage over

one full period).

After traveling a considerable distance by car, some drivers like to

calculate their average speed for the entire trip. This is usually done by

dividing the miles traveled by the hours required to drive that distance.

For example, if a person traveled 225 mi in 5 h, the average speed was

225 mi/5 h, or 45 mi/h. This same distance may have been traveled at

various speeds for various intervals of time, as shown in Fig. 13.36.

By finding the total area under the curve for the 5 h and then divid-

ing the area by 5 h (the total time for the trip), we obtain the same result

of 45 mi/h; that is,

Average speed 5 (13.25)

Average speed 5

5

5 mi/h

5 45 mi/h

Equation (13.25) can be extended to include any variable quantity, such

as current or voltage, if we let G denote the average value, as follows:

G (average value) 5 (13.26)
algebraic sum of areas
}}}

length of curve

225
}

5

(60 mi/h)(2 h) 1 (50 mi/h)(2.5 h)
}}}}

5 h

A1 1 A2
}

5 h

area under curve
}}
length of curve

Height

Distance

Sand

(a)

Height

Average height

Sand

Same
distance

(b)

FIG. 13.34
Effect of distance (length) on average value.

Height

Distance

(a)

Height

Average height

Sand

Same
distance

(b)

Sand

Ground level

FIG. 13.35
Effect of depressions (negative excursions) on

average value.

10
20
30
40
50
60
70

Speed (mi/h)

A1 A2

0 1 2 3 4 5 6 t (h)
Lunch break

Average speed

FIG. 13.36
Plotting speed versus time for an automobile excursion.

The algebraic sum of the areas must be determined, since some area

contributions will be from below the horizontal axis. Areas above the

axis will be assigned a positive sign, and those below, a negative sign.

A positive average value will then be above the axis, and a negative

value, below.

The average value of any current or voltage is the value indicated on

a dc meter. In other words, over a complete cycle, the average value is
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the equivalent dc value. In the analysis of electronic circuits to be con-

sidered in a later course, both dc and ac sources of voltage will be

applied to the same network. It will then be necessary to know or deter-

mine the dc (or average value) and ac components of the voltage or cur-

rent in various parts of the system.

EXAMPLE 13.13 Determine the average value of the waveforms of

Fig. 13.37.

0

10 V

1 2 3 4 t (ms)

–10 V

(a)

0

14 V

1 2 3 4 t (ms)

–6 V

(b)

v1

v2

(Square wave)

FIG. 13.37
Example 13.13.

Solutions:
a. By inspection, the area above the axis equals the area below over

one cycle, resulting in an average value of zero volts. Using Eq.

(13.26):

G 5

5 5 0 V

b. Using Eq. (13.26):

G 5

5 5 5 4 V

as shown in Fig. 13.38.

In reality, the waveform of Fig. 13.37(b) is simply the square wave

of Fig. 13.37(a) with a dc shift of 4 V; that is,

v2 5 v1 1 4 V

EXAMPLE 13.14 Find the average values of the following waveforms

over one full cycle:

a. Fig. 13.39.

b. Fig. 13.40.

8 V
}

2

14 V 2 6 V
}}

2

(14 V)(1 ms) 2 (6 V)(1 ms)
}}}

2 ms

0
}
2 ms

(10 V)(1 ms) 2 (10 V)(1 ms)
}}}}

2 ms

14 V

4 V

0
–6 V

1 2 3 4 t (ms)

FIG. 13.38
Defining the average value for the waveform

of Fig. 13.37(b).

3

v (V)

0

–1

4 8

t (ms)

1 cycle

FIG. 13.39
Example 13.14, part (a).
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Solutions:
a. G 5 5 5 1 V

Note Fig. 13.41.

b. G 5

5 5 2 5 21.6 V

Note Fig. 13.42.

We found the areas under the curves in the preceding example by

using a simple geometric formula. If we should encounter a sine wave

or any other unusual shape, however, we must find the area by some

other means. We can obtain a good approximation of the area by

attempting to reproduce the original wave shape using a number of

small rectangles or other familiar shapes, the area of which we already

know through simple geometric formulas. For example,

the area of the positive (or negative) pulse of a sine wave is 2Am.

Approximating this waveform by two triangles (Fig. 13.43), we obtain

(using area 5 1/2 base 3 height for the area of a triangle) a rough idea

of the actual area:

b h

Area shaded 5 21 bh2 5 231 21 2(Am)4 5 Am

> 1.58Am

A closer approximation might be a rectangle with two similar trian-

gles (Fig. 13.44):

Area 5 Am 1 21 bh2 5 Am 1 Am5 pAm

5 2.094Am

which is certainly close to the actual area. If an infinite number of

forms were used, an exact answer of 2Am could be obtained. For irreg-

ular waveforms, this method can be especially useful if data such as the

average value are desired.

The procedure of calculus that gives the exact solution 2Am is

known as integration. Integration is presented here only to make the

2
}
3

p
}
3

p
}
3

1
}
2

p
}
3

p
}
2

p
}
2

1
}
2

1
}
2

16 V
}

10

220 V 1 8 V 2 4 V
}}}

10

2(10 V)(2 ms) 1 (4 V)(2 ms) 2 (2 V)(2 ms)
}}}}}

10 ms

12 V 2 4 V
}}

8

1(3 V)(4 ms) 2 (1 V)(4 ms)
}}}

8 ms

    

1 cycle

2 4
6 8

10 t (ms)

i (A)

4

0

–2

–10

FIG. 13.40
Example 13.14, part (b).

1

vav (V)

8 t (ms)

1V0

dc voltmeter (between 0 and 8 ms)

FIG. 13.41
The response of a dc meter to the waveform of

Fig. 13.39.

0

–1.6

iav (A)

t (ms)

dc ammeter (between 0 and 10 ms)

– +–1.6

10

FIG. 13.42
The response of a dc meter to the waveform of

Fig. 13.40.

FIG. 13.43
Approximating the shape of the positive pulse

of a sinusoidal waveform with two right

triangles.

FIG. 13.44
A better approximation for the shape of the

positive pulse of a sinusoidal waveform.
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method recognizable to the reader; it is not necessary to be proficient in

its use to continue with this text. It is a useful mathematical tool, how-

ever, and should be learned. Finding the area under the positive pulse of

a sine wave using integration, we have

Area 5 Ep

0

Am sin a da

where ∫ is the sign of integration, 0 and p are the limits of integration,

Am sin a is the function to be integrated, and da indicates that we are

integrating with respect to a.

Integrating, we obtain

Area 5 Am[2cos a]p0
5 2Am(cos p 2 cos 0°)

5 2Am[21 2 (11)] 5 2Am(22)

(13.27)

Since we know the area under the positive (or negative) pulse, we

can easily determine the average value of the positive (or negative)

region of a sine wave pulse by applying Eq. (13.26):

G 5

and (13.28)

For the waveform of Fig. 13.45,

G 5 5
(average the same

as for a full pulse)

EXAMPLE 13.15 Determine the average value of the sinusoidal

waveform of Fig. 13.46.

Solution: By inspection it is fairly obvious that

the average value of a pure sinusoidal waveform over one full cycle is

zero.

Eq. (13.26):

G 5 5 0 V

EXAMPLE 13.16 Determine the average value of the waveform of

Fig. 13.47.

Solution: The peak-to-peak value of the sinusoidal function is

16 mV 1 2 mV 5 18 mV. The peak amplitude of the sinusoidal wave-

form is, therefore, 18 mV/2 5 9 mV. Counting down 9 mV from 2 mV

(or 9 mV up from 216 mV) results in an average or dc level of 27 mV,

as noted by the dashed line of Fig. 13.47.

12Am 2 2Am
}}

2p

2Am
}
p

(2Am/2)
}

p/2

G Am

0 p

G 5 0.637Am

2Am
}
p

Am

0 p

Area 5 2Am

FIG. 13.45
Finding the average value of one-half the

positive pulse of a sinusoidal waveform.

0

1 cycle

Am

Am

π 2 απ

FIG. 13.46
Example 13.15.

+2 mV

v

0
t

–16 mV

FIG. 13.47
Example 13.16.
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EXAMPLE 13.17 Determine the average value of the waveform of

Fig. 13.48.

Solution:
G 5 5 > 3.18 V

EXAMPLE 13.18 For the waveform of Fig. 13.49, determine whether

the average value is positive or negative, and determine its approximate

value.

Solution: From the appearance of the waveform, the average value

is positive and in the vicinity of 2 mV. Occasionally, judgments of this

type will have to be made.

Instrumentation
The dc level or average value of any waveform can be found using a

digital multimeter (DMM) or an oscilloscope. For purely dc circuits,

simply set the DMM on dc, and read the voltage or current levels.

Oscilloscopes are limited to voltage levels using the sequence of steps

listed below:

1. First choose GND from the DC-GND-AC option list associated

with each vertical channel. The GND option blocks any signal to

which the oscilloscope probe may be connected from entering the

oscilloscope and responds with just a horizontal line. Set the

resulting line in the middle of the vertical axis on the horizontal

axis, as shown in Fig. 13.50(a).

2(10 V)
}

2p

2Am 1 0
}

2p

v (mV)

10 mV

0
t

FIG. 13.49
Example 13.18.

(b)

Vertical sensitivity = 50 mV/div.

Shift = 2.5 div.

(a)

FIG. 13.50
Using the oscilloscope to measure dc voltages: (a) setting the GND condition;

(b) the vertical shift resulting from a dc voltage when shifted to the DC option.

2. Apply the oscilloscope probe to the voltage to be measured (if

not already connected), and switch to the DC option. If a dc volt-

age is present, the horizontal line will shift up or down, as

demonstrated in Fig. 13.50(b). Multiplying the shift by the verti-

cal sensitivity will result in the dc voltage. An upward shift is a

positive voltage (higher potential at the red or positive lead of the

oscilloscope), while a downward shift is a negative voltage

(lower potential at the red or positive lead of the oscilloscope).

a1

1 cycle

2pp

v (V)

10

0

Sine wave

FIG. 13.48
Example 13.17.
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In general,

Shift = 0.9 div.

(a)

Reference

level

(b)

FIG. 13.51
Determining the average value of a nonsinusoidal waveform using the

oscilloscope: (a) vertical channel on the ac mode; (b) vertical channel on the

dc mode.

The procedure outlined above can be applied to any alternating

waveform such as the one in Fig. 13.49. In some cases the average

value may require moving the starting position of the waveform under

the AC option to a different region of the screen or choosing a higher

voltage scale. DMMs can read the average or dc level of any waveform

by simply choosing the appropriate scale.

(13.29)Vdc 5 (vertical shift in div.) 3 (vertical sensitivity in V/div.)

For the waveform of Fig. 13.50(b),

Vdc 5 (2.5 div.)(50 mV/div.) 5 125 mV

The oscilloscope can also be used to measure the dc or average level

of any waveform using the following sequence:

1. Using the GND option, reset the horizontal line to the middle of

the screen.

2. Switch to AC (all dc components of the signal to which the probe

is connected will be blocked from entering the oscilloscope—

only the alternating, or changing, components will be displayed).

Note the location of some definitive point on the waveform, such

as the bottom of the half-wave rectified waveform of Fig.

13.51(a); that is, note its position on the vertical scale. For the

future, whenever you use the AC option, keep in mind that the

computer will distribute the waveform above and below the hori-

zontal axis such that the average value is zero; that is, the area

above the axis will equal the area below.

3. Then switch to DC (to permit both the dc and the ac components

of the waveform to enter the oscilloscope), and note the shift in

the chosen level of part 2, as shown in Fig. 13.51(b). Equation

(13.29) can then be used to determine the dc or average value of

the waveform. For the waveform of Fig. 13.51(b), the average

value is about

Vav 5 Vdc 5 (0.9 div.)(5 V/div.) 5 4.5 V
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13.7 EFFECTIVE (rms) VALUES
This section will begin to relate dc and ac quantities with respect to

the power delivered to a load. It will help us determine the amplitude

of a sinusoidal ac current required to deliver the same power as a

particular dc current. The question frequently arises, How is it possi-

ble for a sinusoidal ac quantity to deliver a net power if, over a full

cycle, the net current in any one direction is zero (average value 5

0)? It would almost appear that the power delivered during the posi-

tive portion of the sinusoidal waveform is withdrawn during the neg-

ative portion, and since the two are equal in magnitude, the net

power delivered is zero. However, understand that irrespective of

direction, current of any magnitude through a resistor will deliver

power to that resistor. In other words, during the positive or negative

portions of a sinusoidal ac current, power is being delivered at each

instant of time to the resistor. The power delivered at each instant

will, of course, vary with the magnitude of the sinusoidal ac current,

but there will be a net flow during either the positive or the negative

pulses with a net flow over the full cycle. The net power flow will

equal twice that delivered by either the positive or the negative

regions of sinusoidal quantity.

A fixed relationship between ac and dc voltages and currents can be

derived from the experimental setup shown in Fig. 13.52. A resistor in

a water bath is connected by switches to a dc and an ac supply. If switch

1 is closed, a dc current I, determined by the resistance R and battery

voltage E, will be established through the resistor R. The temperature

reached by the water is determined by the dc power dissipated in the

form of heat by the resistor.

Switch 2

iac

ac generatore

Switch 1

dc source
E

R

Idc

FIG. 13.52
An experimental setup to establish a relationship between dc and ac quantities.

If switch 2 is closed and switch 1 left open, the ac current through

the resistor will have a peak value of Im. The temperature reached by

the water is now determined by the ac power dissipated in the form of

heat by the resistor. The ac input is varied until the temperature is the

same as that reached with the dc input. When this is accomplished, the

average electrical power delivered to the resistor R by the ac source is

the same as that delivered by the dc source.

The power delivered by the ac supply at any instant of time is

Pac 5 (iac)
2R 5 (Im sin qt)2R 5 (I 2m sin2qt)R

but

sin2qt 5 (1 2 cos 2qt) (trigonometric identity)
1
}
2
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Therefore,

Pac 5 I 2m3 (1 2 cos 2qt)4R

and (13.30)

The average power delivered by the ac source is just the first term,

since the average value of a cosine wave is zero even though the wave

may have twice the frequency of the original input current waveform.

Equating the average power delivered by the ac generator to that deliv-

ered by the dc source,

Pav(ac) 5 Pdc

5 I 2dcR and Im 5 Ï2wIdc

or Idc 5 5 0.707Im

which, in words, states that

the equivalent dc value of a sinusoidal current or voltage is 1/ Ï2w or

0.707 of its maximum value.

The equivalent dc value is called the effective value of the sinusoidal

quantity.

In summary,

(13.31)

or (13.32)

and (13.33)

or (13.34)

As a simple numerical example, it would require an ac current with

a peak value of Ï2w(10) 5 14.14 A to deliver the same power to the

resistor in Fig. 13.52 as a dc current of 10 A. The effective value of any

quantity plotted as a function of time can be found by using the fol-

lowing equation derived from the experiment just described:

Ieff 5 !§ (13.35)

or Ieff 5 !§ (13.36)
area (i2(t))
}}

T

ET

0

i2(t) dt

}
T

Em 5 Ï2wEeff 5 1.414Eeff

Eeff 5 0.707Em

Im 5 Ï2wIeff 5 1.414Ieff

Ieq(dc) 5 Ieff 5 0.707Im

Im
}
Ï2w

I2mR
}
2

Pac 5 }
I 2m

2

R
} 2 }

I 2m

2

R
} cos 2qt

1
}
2
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which, in words, states that to find the effective value, the function i(t)

must first be squared. After i(t) is squared, the area under the curve is

found by integration. It is then divided by T, the length of the cycle or

the period of the waveform, to obtain the average or mean value of the

squared waveform. The final step is to take the square root of the mean

value. This procedure gives us another designation for the effective

value, the root-mean-square (rms) value. In fact, since the rms term is

the most commonly used in the educational and industrial communities,

it will used throughout this text.

EXAMPLE 13.19 Find the rms values of the sinusoidal waveform in

each part of Fig. 13.53.

12

i (mA)

0 1s
t

12

i (mA)

0
t

1s 2 s
t

v

169.7 V

(c)(b)(a)

FIG. 13.53
Example 13.19.

Solution: For part (a), Irms 5 0.707(12 3 1023 A) 5 8.484 mA.

For part (b), again Irms 5 8.484 mA. Note that frequency did not

change the effective value in (b) above compared to (a). For part (c),

Vrms 5 0.707(169.73 V) > 120 V, the same as available from a home

outlet.

EXAMPLE 13.20 The 120-V dc source of Fig. 13.54(a) delivers

3.6 W to the load. Determine the peak value of the applied voltage

(Em) and the current (Im) if the ac source [Fig. 13.54(b)] is to

deliver the same power to the load.

iac

–

P  =  3.6 W
Load

Em

Idc

E 120 V P  =  3.6 W
Load

e

Im

+

(b)(a)

FIG. 13.54
Example 13.20.
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Solution:
Pdc 5 VdcIdc

and Idc 5 5 5 30 mA

Im 5 Ï2wIdc 5 (1.414)(30 mA) 5 42.42 mA

Em 5 Ï2wEdc 5 (1.414)(120 V) 5 169.68 V

EXAMPLE 13.21 Find the effective or rms value of the waveform of

Fig. 13.55.

Solution:
v2 (Fig. 13.56):

Vrms 5 !§ 5 !§ 5 2.236 V

EXAMPLE 13.22 Calculate the rms value of the voltage of Fig. 13.57.

40
}
8

(9)(4) 1 (1)(4)
}}

8

3.6 W
}
120 V

Pdc
}
Vdc

1 cycle

t (s)

840

3

–1

v (V)

9

v2 (V)

1

0 4 8 t (s)

(– 1)2  =  1

1 cycle

4

v (V)

0
–2

–10

4 6 8 10 t (s)

FIG. 13.55
Example 13.21.

FIG. 13.56
The squared waveform of Fig. 13.55.

FIG. 13.57
Example 13.22.

Solution:
v2 (Fig. 13.58):

Vrms 5 !§§ 5 !§
5 4.899 V

240
}
10

(100)(2) 1 (16)(2) 1 (4)(2)
}}}

10

100

2 4 6 8 10

16
4

0 t (s)

v2 (V)

FIG. 13.58
The squared waveform of Fig. 13.57.
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EXAMPLE 13.23 Determine the average and rms values of the square

wave of Fig. 13.59.

Solution: By inspection, the average value is zero.

v2 (Fig. 13.60):

Vrms 5 !§§§
5 !§5 Ï1w6w0w0w

Vrms 5 40 V

(the maximum value of the waveform of Fig. 13.60)

The waveforms appearing in these examples are the same as those

used in the examples on the average value. It might prove interesting to

compare the rms and average values of these waveforms.

The rms values of sinusoidal quantities such as voltage or current

will be represented by E and I. These symbols are the same as those

used for dc voltages and currents. To avoid confusion, the peak value

of a waveform will always have a subscript m associated with it: Im

sin qt. Caution: When finding the rms value of the positive pulse of a

sine wave, note that the squared area is not simply (2Am)2
5 4A2

m; it

must be found by a completely new integration. This will always be

the case for any waveform that is not rectangular.

A unique situation arises if a waveform has both a dc and an ac com-

ponent that may be due to a source such as the one in Fig. 13.61. The

combination appears frequently in the analysis of electronic networks

where both dc and ac levels are present in the same system.

32,000 3 1023

}}
20 3 1023

(1600)(10 3 1023) 1 (1600)(10 3 1023)
}}}}}

20 3 1023

20100

v2 (V)

1600

t (ms)

FIG. 13.60
The squared waveform of Fig. 13.59.

3 sin    t
+

–

6 V

vT

+

–

vT

7.5 V

6 V

4.5 V

0 t

ω

FIG. 13.61
Generation and display of a waveform having a dc and an ac component.

The question arises, What is the rms value of the voltage vT? One

might be tempted to simply assume that it is the sum of the rms values

of each component of the waveform; that is, VT rms
5 0.7071(1.5 V) 1

6 V 5 1.06 V 1 6 V 5 7.06 V. However, the rms value is actually

determined by

Vrms 5 ÏVw2
dcw 1w Vw2

acw(rmws)w (13.37)

which for the above example is

Vrms 5 Ï(6w Vw)2w 1w (w1w.0w6w Vw)2w
5 Ï3w7w.1w2w4w V

> 6.1 V

40

0

–40

10 20 t (ms)

v (V)

1 cycle

FIG. 13.59
Example 13.23.
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This result is noticeably less than the above solution. The development

of Eq. (13.37) can be found in Chapter 25.

Instrumentation
It is important to note whether the DMM in use is a true rms meter or

simply a meter where the average value is calibrated (as described in

the next section) to indicate the rms level. A true rms meter will read

the effective value of any waveform (such as Figs. 13.49 and 13.61)

and is not limited to only sinusoidal waveforms. Since the label true

rms is normally not placed on the face of the meter, it is prudent to

check the manual if waveforms other than purely sinusoidal are to be

encountered. For any type of rms meter, be sure to check the manual for

its frequency range of application. For most it is less than 1 kHz.

13.8 ac METERS AND INSTRUMENTS
The d’Arsonval movement employed in dc meters can also be used to

measure sinusoidal voltages and currents if the bridge rectifier of Fig.

13.62 is placed between the signal to be measured and the average read-

ing movement.

The bridge rectifier, composed of four diodes (electronic switches),

will convert the input signal of zero average value to one having an

average value sensitive to the peak value of the input signal. The con-

version process is well described in most basic electronics texts. Fun-

damentally, conduction is permitted through the diodes in such a man-

ner as to convert the sinusoidal input of Fig. 13.63(a) to one having the

appearance of Fig. 13.63(b). The negative portion of the input has been

effectively “flipped over” by the bridge configuration. The resulting

waveform of Fig. 13.63(b) is called a full-wave rectified waveform.

vmovement

vi

+

–

+–

FIG. 13.62
Full-wave bridge rectifier.

vi

Vm

–Vm

0 p 2 a

(a)

vmovement

Vm

0 p 2 a

(b)

Vdc  =  0.637Vm

p p

FIG. 13.63
(a) Sinusoidal input; (b) full-wave rectified signal.

The zero average value of Fig. 13.63(a) has been replaced by a pat-

tern having an average value determined by

G 5 5 5 5 0.637Vm

The movement of the pointer will therefore be directly related to the

peak value of the signal by the factor 0.637.

Forming the ratio between the rms and dc levels will result in

5 > 1.11
0.707Vm
}
0.637Vm

Vrms
}
Vdc

2Vm
}
p

4Vm
}
2p

2Vm 1 2Vm
}}

2p



552  SINUSOIDAL ALTERNATING WAVEFORMS

revealing that the scale indication is 1.11 times the dc level measured

by the movement; that is,

full-wave (13.38)

Some ac meters use a half-wave rectifier arrangement that results in

the waveform of Fig. 13.64, which has half the average value of Fig.

13.63(b) over one full cycle. The result is

half-wave (13.39)

A second movement, called the electrodynamometer movement

(Fig. 13.65), can measure both ac and dc quantities without a change in

internal circuitry. The movement can, in fact, read the effective value of

any periodic or nonperiodic waveform because a reversal in current

direction reverses the fields of both the stationary and the movable

coils, so the deflection of the pointer is always up-scale.

The VOM, introduced in Chapter 2, can be used to measure both dc

and ac voltages using a d’Arsonval movement and the proper switching

networks. That is, when the meter is used for dc measurements, the dial

setting will establish the proper series resistance for the chosen scale

and will permit the appropriate dc level to pass directly to the move-

ment. For ac measurements, the dial setting will introduce a network

that employs a full- or half-wave rectifier to establish a dc level. As dis-

cussed above, each setting is properly calibrated to indicate the desired

quantity on the face of the instrument.

EXAMPLE 13.24 Determine the reading of each meter for each situ-

ation of Fig. 13.66(a) and (b).

Meter indication 5 2.22 (dc or average value)

Meter indication 5 1.11 (dc or average value)

Vm

vmovement

Vdc  =  0.318Vm

p 2p

FIG. 13.64
Half-wave rectified signal.

FIG. 13.65
Electrodynamometer movement. (Courtesy of

Weston Instruments, Inc.)

(1)

20 V

+

–

dc

(2)

Vm  =  20 V

+

–

ac

(a)

d’Arsonval
movement

rms scale

(full-wave
rectifier)

Voltmeter

(1)

+

–

dc

(2)

+

–

(b)

Electrodynamometer
movement

rms scale

Voltmeter

25 V e  =  15 sin 200t

FIG. 13.66
Example 13.24.
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Solution: For Fig. 13.66(a), situation (1): By Eq. (13.38),

Meter indication 5 1.11(20 V) 5 22.2 V

For Fig. 13.66(a), situation (2):

Vrms 5 0.707Vm 5 0.707(20 V) 5 14.14 V

For Fig. 13.66(b), situation (1):

Vrms 5 Vdc 5 25 V

For Fig. 13.66(b), situation (2):

Vrms 5 0.707Vm 5 0.707(15 V) > 10.6 V

Most DMMs employ a full-wave rectification system to convert the

input ac signal to one with an average value. In fact, for the DMM of

Fig. 2.27, the same scale factor of Eq. (13.38) is employed; that is, the

average value is scaled up by a factor of 1.11 to obtain the rms value.

In digital meters, however, there are no moving parts such as in the

d’Arsonval or electrodynamometer movements to display the signal

level. Rather, the average value is sensed by a multiprocessor integrated

circuit (IC), which in turn determines which digits should appear on the

digital display.

Digital meters can also be used to measure nonsinusoidal signals,

but the scale factor of each input waveform must first be known (nor-

mally provided by the manufacturer in the operator’s manual). For

instance, the scale factor for an average responding DMM on the ac rms

scale will produce an indication for a square-wave input that is 1.11

times the peak value. For a triangular input, the response is 0.555 times

the peak value. Obviously, for a sine wave input, the response is 0.707

times the peak value.

For any instrument, it is always good practice to read (if only briefly)

the operator’s manual if it appears that you will use the instrument on a

regular basis.

For frequency measurements, the frequency counter of Fig. 13.67

provides a digital readout of sine, square, and triangular waves from 

5 Hz to 100 MHz at input levels from 30 mV to 42 V. Note the relative

simplicity of the panel and the high degree of accuracy available.

The Amp-Clamp® of Fig. 13.68 is an instrument that can measure

alternating current in the ampere range without having to open the cir-

cuit. The loop is opened by squeezing the “trigger”; then it is placed

around the current-carrying conductor. Through transformer action, the

level of current in rms units will appear on the appropriate scale. The

accuracy of this instrument is 63% of full scale at 60 Hz, and its scales

have maximum values ranging from 6 A to 300 A. The addition of two

leads, as indicated in the figure, permits its use as both a voltmeter and

an ohmmeter.

One of the most versatile and important instruments in the electron-

ics industry is the oscilloscope, which has already been introduced in

this chapter. It provides a display of the waveform on a cathode-ray

tube to permit the detection of irregularities and the determination of

quantities such as magnitude, frequency, period, dc component, and so

on. The analog oscilloscope of Fig. 13.69 can display two waveforms at

the same time (dual-channel) using an innovative interface (front

panel). It employs menu buttons to set the vertical and horizontal scales

by choosing from selections appearing on the screen. One can also store

up to four measurement setups for future use.

FIG. 13.67
Frequency counter. (Courtesy of Tektronix,

Inc.)

FIG. 13.68
Amp-Clamp®. (Courtesy of Simpson

Instruments, Inc.)

FIG. 13.69
Dual-channel oscilloscope. (Courtesy of

Tektronix, Inc.)
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A student accustomed to watching TV might be confused when

first introduced to an oscilloscope. There is, at least initially, an

assumption that the oscilloscope is generating the waveform on the

screen—much like a TV broadcast. However, it is important to

clearly understand that

an oscilloscope displays only those signals generated elsewhere and

connected to the input terminals of the oscilloscope. The absence of

an external signal will simply result in a horizontal line on the screen

of the scope.

On most modern-day oscilloscopes, there is a switch or knob with

the choice DC/GND/AC, as shown in Fig. 13.70(a), that is often

ignored or treated too lightly in the early stages of scope utilization.

The effect of each position is fundamentally as shown in Fig. 13.70(b).

In the DC mode the dc and ac components of the input signal can pass

directly to the display. In the AC position the dc input is blocked by the

capacitor, but the ac portion of the signal can pass through to the

screen. In the GND position the input signal is prevented from reaching

the scope display by a direct ground connection, which reduces the

scope display to a single horizontal line.

Input signal
AC

GND

DC

(b)

Oscilloscope
display

AC

GND

DC

(a)

FIG. 13.70
AC-GND-DC switch for the vertical channel of an oscilloscope.

13.9 APPLICATIONS
(120 V at 60 Hz) versus (220 V at 50 Hz)
In North and South America the most common available ac supply is

120 V at 60 Hz, while in Europe and the Eastern countries it is 220 V

at 50 Hz. The choices of rms value and frequency were obviously made

carefully because they have such an important impact on the design and

operation of so many systems.

The fact that the frequency difference is only 10 Hz reveals that

there was agreement on the general frequency range that should be used

for power generation and distribution. History suggests that the ques-

tion of frequency selection was originally focused on that frequency

that would not exhibit flicker in the incandescent lamps available in

those days. Technically, however, there really wouldn’t be a noticeable

difference between 50 and 60 cycles per second based on this criterion.

Another important factor in the early design stages was the effect of fre-

quency on the size of transformers, which play a major role in power

generation and distribution. Working through the fundamental equa-

tions for transformer design, you will find that the size of a transformer

is inversely proportional to frequency. The result is that transformers

operating at 50 Hz must be larger (on a purely mathematical basis about

17% larger) than those operating at 60 Hz. You will therefore find that

transformers designed for the international market where they can oper-
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ate on 50 Hz or 60 Hz are designed around the 50-Hz frequency. On the

other side of the coin, however, higher frequencies result in increased

concerns about arcing, increased losses in the transformer core due to

eddy current and hysteresis losses (Chapter 19), and skin effect phe-

nomena (Chapter 19). Somewhere in the discussion we must consider

the fact that 60 Hz is an exact multiple of 60 seconds in a minute and

60 minutes in an hour. Since accurate timing is such a critical part of

our technological design, was this a significant motive in the final

choice? There is also the question about whether the 50 Hz is a result

of the close affinity of this value to the metric system. Keep in mind

that powers of 10 are all powerful in the metric system, with 100 cm in

a meter, 100°C the boiling point of water, and so on. Note that 50 Hz is

exactly half of this special number. All in all, it would seem that both

sides have an argument that would be worth defending. However, in the

final analysis, we must also wonder whether the difference is simply

political in nature.

The difference in voltage between North America and Europe is a

different matter entirely in the sense that the difference is close to

100%. Again, however, there are valid arguments for both sides. There

is no question that larger voltages such as 220 V raise safety issues

beyond those raised by voltages of 120 V. However, when higher volt-

ages are supplied, there is less current in the wire for the same power

demand, permitting the use of smaller conductors—a real money saver.

In addition, motors, compressors, and so on, found in common home

appliances and throughout the industrial community can be smaller in

size. Higher voltages, however, also bring back the concern about arc-

ing effects, insulation requirements, and, due to real safety concerns,

higher installation costs. In general, however, international travelers are

prepared for most situations if they have a transformer that can convert

from their home level to that of the country they plan to visit. Most

equipment (not clocks, of course) can run quite well on 50 Hz or 60 Hz

for most travel periods. For any unit not operating at its design fre-

quency, it will simply have to “work a little harder” to perform the

given task. The major problem for the traveler is not the transformer

itself but the wide variety of plugs used from one country to another.

Each country has its own design for the “female” plug in the wall. For

the three-week tour, this could mean as many as 6 to 10 different plugs

of the type shown in Fig. 13.71. For a 120-V, 60-Hz supply, the plug is

quite standard in appearance with its two spade leads (and possible

ground connection).

In any event, both the 120 V at 60 Hz and the 220 V at 50 Hz are

obviously meeting the needs of the consumer. It is a debate that could

go on at length without an ultimate victor.

Safety Concerns (High Voltages and dc versus ac)
Be aware that any “live” network should be treated with a calculated

level of respect. Electricity in its various forms is not to be feared but

should be employed with some awareness of its potentially dangerous

side effects. It is common knowledge that electricity and water do not

mix (never use extension cords or plug in TVs or radios in the bath-

room) because a full 120 V in a layer of water of any height (from a

shallow puddle to a full bath) can be lethal. However, other effects of

dc and ac voltages are less known. In general, as the voltage and cur-

rent increase, your concern about safety should increase exponentially.

FIG. 13.71
Variety of plugs for a 220-V, 50-Hz

connection.
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For instance, under dry conditions, most human beings can survive a

120-V ac shock such as obtained when changing a light bulb, turning

on a switch, and so on. Most electricians have experienced such a jolt

many times in their careers. However, ask an electrician to relate how it

feels to hit 220 V, and the response (if he or she has been unfortunate to

have had such an experience) will be totally different. How often have

you heard of a back-hoe operator hitting a 220-V line and having a fatal

heart attack? Remember, the operator is sitting in a metal container on

a damp ground which provides an excellent path for the resulting cur-

rent to flow from the line to ground. If only for a short period of time,

with the best environment (rubber-sole shoes, etc.), in a situation where

you can quickly escape the situation, most human beings can also sur-

vive a 220-V shock. However, as mentioned above, it is one you will

not quickly forget. For voltages beyond 220 V rms, the chances of sur-

vival go down exponentially with increase in voltage. It takes only

about 10 mA of steady current through the heart to put it in defibrilla-

tion. In general, therefore, always be sure that the power is discon-

nected when working on the repair of electrical equipment. Don’t

assume that throwing a wall switch will disconnect the power. Throw

the main circuit breaker and test the lines with a voltmeter before work-

ing on the system. Since voltage is a two-point phenomenon, don’t be a

hero and work with one line at at time—accidents happen!

You should also be aware that the reaction to dc voltages is quite dif-

ferent from that to ac voltages. You have probably seen in movies or

comic strips that people are often unable to let go of a hot wire. This is

evidence of the most important difference between the two types of

voltages. As mentioned above, if you happen to touch a “hot” 120-V ac

line, you will probably get a good sting, but you can let go. If it hap-

pens to be a “hot” 120-V dc line, you will probably not be able to let

go, and a fatality could occur. Time plays an important role when this

happens, because the longer you are subjected to the dc voltage, the

more the resistance in the body decreases until a fatal current can be

established. The reason that we can let go of an ac line is best demon-

strated by carefully examining the 120-V rms, 60-Hz voltage in Fig.

13.72. Since the voltage is oscillating, there is a period of time when the

voltage is near zero or less than, say, 20 V, and is reversing in direction.

Although this time interval is very short, it appears every 8.3 ms and

provides a window to let go.

Now that we are aware of the additional dangers of dc voltages, it is

important to mention that under the wrong conditions, dc voltages as

low as 12 V such as from a car battery can be quite dangerous. If you

happen to be working on a car under wet conditions, or if you are

sweating badly for some reason or, worse yet, wearing a wedding ring

that may have moisture and body salt underneath, touching the positive

terminal may initiate the process whereby the body resistance begins to

drop and serious injury could take place. It is one of the reasons you

seldom see a professional electrician wearing any rings or jewelry—it

is just not worth the risk.

Before leaving this topic of safety concerns, you should also be

aware of the dangers of high-frequency supplies. We are all aware of

what 2.45 GHz at 120 V can do to a meat product in a microwave oven.

As discussed in Chapter 5, it is therefore very important that the seal

around the oven be as tight as possible. However, don’t ever assume

that anything is absolutely perfect in design—so don’t make it a habit

to view the cooking process in the microwave 6 in. from the door on a

V(volts)

tf

120 V rms
ac voltage

t

170

20
0

–20

FIG 13.72
Interval of time when sinusoidal voltage is

near zero volts.
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continuing basis. Find something else to do, and check the food only

when the cooking process is complete. If you ever visit the Empire

State Building, you will notice that you are unable to get close to the

antenna on the dome due to the high-frequency signals being emitted

with a great deal of power. Also note the large KEEP OUT signs near

radio transmission towers for local radio stations. Standing within 10 ft

of an AM transmitter working at 540 kHz would bring on disaster. Sim-

ply holding (not to be tried!) a fluorescent bulb near the tower could

make it light up due to the excitation of the molecules inside the bulb.

In total, therefore, treat any situation with high ac voltages or cur-

rents, high-energy dc levels, and high frequencies with added care.

Bulb Savers
Ever since the invention of the light bulb, consumers have clamored for

ways to extend the life of a bulb. I can remember the days when I was

taught to always turn a light off when leaving a room and not to play

with a light switch because it cost us a penny (at a time when a penny

had some real value) every time I turned the switch on and off. Through

advanced design we now have bulbs that are guaranteed to last a num-

ber of years. They cost more, but there is no need to replace the bulb as

often, and over time there is a financial savings. For some of us it is

simply a matter of having to pay so much for a single bulb.

For interest sake, I measured the cold dc resistance of a standard

60-W bulb and found it to be about 14 V. Forgetting any inductive

effects due to the filament and wire, this would mean a current of

120 V/14 V 5 8.6 A when the light is first turned on. This is a fairly

heavy current for the filament to absorb when you consider that the nor-

mal operating current is 60 W/120 V 5 0.5 A. Fortunately, it lasts for

only a few milliseconds, as shown in Fig. 13.73(a), before the bulb

heats up, causing the filament resistance to quickly increase and cut the

current down to reasonable levels. However, over time, hitting the bulb

with 8.6 A every time you turn the switch on will take its toll on the fil-

ament, and eventually the filament will simply surrender its natural

characteristics and open up. You can easily tell if a bulb is bad by sim-

ply shaking it and listening for the clinking sound of the broken fila-

ment hitting the bulb. Assuming an initial current of 8.6 A for a single

bulb, if the light switch controlled four 60-W bulbs in the same room,

the surge current through the switch could be as high as 4(8.6 A) 5

34.4 A as shown in Fig. 13.73(b), which probably exceeds the rating of

the breaker (typically 20 A) for the circuit. However, the saving grace is

that it lasts for only a few milliseconds, and circuit breakers are not

designed to react that quickly. Even the GFI safety breakers in the bath-

room are typically rated at a 5-ms response time. However, when you

look at the big picture and imagine all these spikes on the line gener-

ated throughout a residential community, it is certainly a problem that

the power company has to deal with on a continuing basis.

One way to suppress this surge current is to place an inductor in

series with the bulb to choke out the spikes down the line. This method,

in fact, leads to one way of extending the life of a light bulb through the

use of dimmers. Any well-designed dimmer (such as the one described

in Chapter 12) has an inductor in the line to suppress current surges.

The results are both an extended life for the bulb and the ability to con-

trol the power level. Left on in the full voltage position, the switch

could be used as a regular switch and the life of the bulb could be

0 0.5 1 1.5 2 t (s)

2

34.4

IT (A), four parallel 60-W bulbs

(b)

250 ms

(a)

Ibulb (A)

8.6

0.5

0 1 2 3 4 5 6 7 t (ms)

FIG 13.73
Surge currents: (a) single 60-W bulb; (b) four

parallel 60-W bulbs.
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extended. In fact, many dimmers now use triacs designed to turn on

only when the applied voltage passes through zero. If we look at the full

sine wave of Fig. 13.74(a), we find that the voltage is at least half of its

maximum value of 85 V for a full two-thirds of each cycle, or about

67% of the time. The chances, therefore, of your turning on a light bulb

with at least 85 V on the line is far better than 2 to 1, so you can expect

the current for a 60-W light bulb to be at least 85 V/14 V 5 6 A 67%

of the time, which exceeds the rated 0.5-A rated value by 1100%. If we

use a dimmer with a triac designed to turn on only when the applied

voltage passes through zero or shortly thereafter, as shown in Fig.

(a)
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0
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30° 150°

360°180°
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(b)
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0
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V (volts)

Vbulb 360°180°
90° t

Turn-on
Dimmer ensures
bulb will not
turn on when
applied voltage is
near its maximum.

FIG. 13.74
Turn-on voltage: (a) equal to or greater than one-half the peak value; (b) when

a dimmer is used.
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FIG. 13.75
Bulb saver: (a) external appearance; (b) basic operation; (c) diode

characteristics at high current levels.



COMPUTER ANALYSIS  559

13.74(b), the applied voltage will increase from about zero volts, giving

the bulb time to warm up before the full voltage is applied.

Another commercial offering to extend the life of light bulbs is the

smaller circular disc shown in Fig. 13.75(a) which is inserted between

the bulb and the holder. Contacts are provided on both sides to permit

conduction through the simple diode network shown in Fig. 13.75(b).

You may recall from an earlier chapter that the voltage across diodes in

the on state is 0.7 V as shown for each diode in Fig. 13.75(b) for the

positive portion of the input voltage. The result is that the voltage to the

bulb is reduced by about 1.4 V throughout the cycle, reducing the

power delivered to the bulb. For most situations the reduced lighting is

not a problem, and the bulb will last longer simply because it is not

pressed to work at full output. However, the real saving in the device is

the manner in which it could help suppress the surge currents through

the light bulb. The true characteristics of a diode are shown in Fig.

13.75(c) for the full range of currents through the diode. For most

applications in electronic circuits, the vertical region is employed. For

excessive currents the diode characteristics flatten out as shown. This

region is characterized as having a large resistance (compared to very

small resistance of the vertical region) which will come into play

when the bulb is first turned on. In other words, when the bulb is first

turned on, the current will be so high that the diode will enter its high-

resistance region and by Ohm’s law will limit the surge current—

thereby extending the life of the bulb. The two diodes facing the other

way are for the negative portion of the supply voltage.

New methods of extending the life of bulbs hit the marketplace every

day. All in all, however, one guaranteed way to extend the life of your

bulbs is to return to the old philosophy of turning lights off when you

leave a room, and “Don’t play with the light switch!”

13.10 COMPUTER ANALYSIS
PSpice
OrCAD Capture offers a variety of ac voltage and current sources.

However, for the purposes of this text, the voltage source VSIN and

the current source ISIN are the most appropriate because they have a

list of attributes that will cover current areas of interest. Under the

library SOURCE, a number of others are listed, but they don’t have

the full range of the above, or they are dedicated to only one type of

analysis. On occasion, ISRC will be used because it has an arrow

symbol like that appearing in the text, and it can be used for dc, ac,

and some transient analyses. The symbol for ISIN is simply a sine

wave which utilizes the plus-and-minus sign to indicate direction. The

sources VAC, IAC, VSRC, and ISRC are fine if the magnitude and

the phase of a specific quantity are desired or if a transient plot against

frequency is desired. However, they will not provide a transient

response against time even if the frequency and the transient informa-

tion are provided for the simulation.

For all of the sinusoidal sources, the magnitude (VAMPL) is the

peak value of the waveform and not the rms value. This will become

clear when a plot of a quantity is desired and the magnitude calculated

by PSpice is the peak value of the transient response. However, for a

purely steady-state ac response, the magnitude provided can be the rms
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value, and the output read as the rms value. Only when a plot is desired

will it be clear that PSpice is accepting every ac magnitude as the peak

value of the waveform. Of course, the phase angle is the same whether

the magnitude is the peak or the rms value.

Before examining the mechanics of getting the various sources,

remember that

Transient Analysis provides an ac or a dc output versus time, while

AC Sweep is used to obtain a plot versus frequency.

To obtain any of the sources listed above, apply the following sequence: 

Place part key-Place Part dialog box-Source-(enter type of source).

Once selected the ac source VSIN will appear on the schematic with

VOFF, VAMPL, and FREQ. Always specify VOFF as 0 V (unless a

specific value is part of the analysis), and provide a value for the ampli-

tude and frequency. The remaining quantities of PHASE, AC, DC, DF,

and TD can be entered by double-clicking on the source symbol to

obtain the Property Editor, although PHASE, DF (damping factor),

and TD (time delay) do have a default of 0 s. To add a phase angle, sim-

ply click on PHASE, enter the phase angle in the box below, and then

select Apply. If you want to display a factor such as a phase angle of

60°, simply click on PHASE followed by Display to obtain the Dis-

play Properties dialog box. Then choose Name and Value followed by

OK and Apply, and leave the Properties Editor dialog box (X) to see

PHASE560 next to the VSIN source. The next chapter will include the

use of the ac source in a simple circuit.

Electronics Workbench
For EWB, the ac voltage source is available from two sources—the

Sources parts bin and the Function Generator. The major difference

between the two is that the phase angle can be set when using the Sources

parts bin, whereas it cannot be set using the Function Generator.

Under Sources, the ac voltage source is the fourth option down on

the left column of the toolbar. When selected and placed, it will display

the default values for the amplitude, frequency, and phase.All the param-

eters of the source can be changed by double-clicking on the source

symbol to obtain the AC Voltage dialog box. The Voltage Amplitude

and Voltage RMS are interlinked so that when you change one, the

other will change accordingly. For the 1V default value, the rms value

is automatically listed as 0.71 (not 0.7071 because of the hundredths-

place accuracy). Note that the unit of measurement is controlled by the

scrolls to the right of the default label and cannot be set by typing in the

desired unit of measurement. The label can be changed by simply

switching the Label heading and inserting the desired label. After all

the changes have been made in the AC Voltage dialog box, click OK,

and all the changes will appear next to the ac voltage source symbol. In

Fig. 13.76 the label was changed to Vs and the amplitude to 10 V while

the frequency and phase angle were left with their default values. It is

particularly important to realize that 

for any frequency analysis (that is, where the frequency will change),

the AC Magnitude of the ac source must be set under Analysis Setup

in the AC Voltage dialog box. Failure to do so will create results

linked to the default values rather than the value set under the Value

heading.
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To view the sinusoidal voltage set in Fig. 13.76, an oscilloscope can

be selected from the Instrument toolbar at the right of the screen. It is

the fourth option down and has the appearance shown in Fig. 13.76

when selected. Note that it is a dual-channel oscilloscope with an A

channel and a B channel. It has a ground (G) connection and a trigger

(T) connection. The connections for viewing the ac voltage source on

the A channel are provided in Fig. 13.76. Note that the trigger control

is also connected to the A channel for sync control. The screen appear-

ing in Fig. 13.76 can be displayed by double-clicking on the oscillo-

scope symbol on the screen. It has all the major controls of a typical

laboratory oscilloscope. When you select Simulate-Run or select 1 on

the Simulate Switch, the ac voltage will appear on the screen. Chang-

ing the Time base to 100 ms/div. will result in the display of Fig. 13.76

since there are 10 divisions across the screen and 10(100ms) 5 1 ms

(the period of the applied signal). Changes in the Time base are made

by simply clicking on the default value to obtain the scrolls in the same

box. It is important to remember, however, that

changes in the oscilloscope setting or any network should not be

made until the simulation is ended by disabling the Simulate-Run

option or placing the Simulate switch in the 0 mode.

The options within the time base are set by the scroll bars and can-

not be changed—again they match those typically available on a labo-

ratory oscilloscope. The vertical sensitivity of the A channel was auto-

matically set by the program at 5 V/div. to result in two vertical boxes

for the peak value as shown in Fig. 13.76. Note the AC and DC key

pads below Channel A. Since there is no dc component in the applied

signal, either one will result in the same display. The Trigger control is

FIG. 13.76
Using the oscilloscope to display the sinusoidal ac voltage source available in

the Electronics Workbench Sources tool bin.
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set on the positive transition at a level of 0 V. The T1 and T2 refer to

the cursor positions on the horizontal time axis. By simply clicking on

the small red triangle at the top of the red line at the far left edge of the

screen and dragging the triangle, you can move the vertical red line to

any position along the axis. In Fig.13.76 it was moved to the peak value

of the waveform at 1⁄4 of the total period or 0.25 ms 5 250 ms. Note the

value of T1 (250.3 ms) and the corresponding value of VA1 (10.0V). By

moving the other cursor with a blue triangle at the top to 1⁄2 the total

period or 0.5 ms 5 500 ms, we find that the value at T2 (500.3 ms) is

218.9 mV (VA2), which is approximately 0 V for a waveform with a

peak value of 10 V. The accuracy is controlled by the number of data

points called for in the simulation setup. The more data points, the

higher the likelihood of a higher degree of accuracy for the desired

quantity. However, an increased number of data points will also extend

the running time of the simulation. The third display box to the right

gives the difference between T2 and T1 as 250 ms and difference

between their magnitudes (VA2-VA1) as 210 V, with the negative sign

appearing because VA1 is greater than VA2.

As mentioned above, an ac voltage can also be obtained from the

Function Generator appearing as the second option down on the

Instrument toolbar. Its symbol appears in Fig. 13.77 with positive, neg-

ative, and ground connections. Double-click on the generator graphic

symbol, and the Function Generator-XFG1 dialog box will appear in

which selections can be made. For this example, the sinusoidal wave-

form is chosen. The Frequency is set at 1 kHz, the Amplitude is set at

10 V, and the Offset is left at 0 V. Note that there is no option to set the

phase angle as was possible for the source above. Double-clicking on the

FIG. 13.77
Using the function generator to place a sinusoidal ac voltage waveform on the

screen of the oscilloscope.
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oscilloscope will generate the oscilloscope on which a Timebase of

100 ms/div. can be set again with a vertical sensitivity of 5 V/div. Select

1 on the Simulate switch, and the waveform of Fig. 13.77 will appear.

Choosing Singular under Trigger will result in a fixed display; then set

the Simulate switch on 0 to the end the simulation. Placing the cursors

in the same position shows that the waveforms for Figs. 13.76 and 13.77

are the same.

For most of the EWB analyses to appear in this text, the

AC–VOLTAGE–SOURCE under Sources will be employed. How-

ever, with such a limited introduction to EWB, it seemed appropriate

to introduce the use of the Function Generator because of its close

linkage to the laboratory experience.

C11

Calculating the Average Value of a Waveform The absence of

any network configurations to analyze in this chapter severely limits the

content with respect to packaged computer programs. However, the

door is still wide open for the application of a language to write pro-

grams that can be helpful in the application of some of the concepts

introduced in the chapter. In particular, let us examine the C11 pro-

gram of Fig. 13.78, designed to calculate the average value of a pulse

waveform having up to 5 different levels.

The program begins with a heading and preprocessor directive.

Recall that the iostream.h header file sets up the input-output path

Heading

Preprocessor

directive

Define

form

and

name

of

variables

Obtain

# of

levels

Iterative

for

statement

Calculate Vave

Display

results

Body

of

program

FIG. 13.78
C11 program designed to calculate the average value of a waveform with up

to five positive or negative pulses.
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between the program and the disk operating system. Note that the main

( ) part of the program extends all the way down to the bottom, as iden-

tified by the braces { }. Within this region all the calculations will be

performed, and the results will be displayed.

Within the main ( ) part of the program, all the variables to be

employed in the calculations are defined as floating point (decimal val-

ues) or integer (whole numbers). The comments on the right identify

each variable. This is followed by a display of the question about how

many levels will be encountered in the waveform using cout (comment

out). The cin (comment in) statement permits a response from the user. 

Next, the loop statement for is employed to establish a fixed number

of repetitions of the sequence appearing within the parentheses ( ) for

a number of loops defined by the variable levels. The format of this for

statement is such that the first entry within the parentheses ( ) is the

initial value of the variable count (1 in this case), followed by a semi-

colon and then a test expression determining how many times the

sequence to follow will be repeated. In other words, if levels is 5, then

the first pass through the for statement will result in 1 being compared

to 5, and the test expression will be satisfied because 5 is greater than

or equal to 1 (< 5). On the next pass, count will be increased to 2, and

the same test will be performed. Eventually count will equal 5, the test

expression will not be satisfied, and the program will move to its next

statement, which is Vave 5 VT sum/ T. The last entry count11 of the

for statement simply increments the variable count after each iteration.

The first line within the for statement calls for a line to be skipped, fol-

lowed by a question on the display about the level of voltage for the

first time interval. The question will include the current state of the

count variable followed by a colon. In C11 all character outputs must

be displayed in quotes (not required for numerical values). However,

note the absence of the quotes for count since it will be a numerical

value. Next the user enters the first voltage level through cin, followed

by a request for the time interval. In this case units are not provided but

simply measured as an increment of the whole; that is, if the total

period is 5 ms and the first interval is 2 ms, then just a 2 is entered.

The area under the pulse is then calculated to establish the variable

VTsum, which was initially set at 0. On the next pass the value of

VTsum will be the value obtained by the first run plus the new area. In

other words, VTsum is a storage for the total accumulated area. Simi-

larly, T is the accumulated sum of the time intervals.

Following a FALSE response from the test expression of the for

statement, the program will move to calculate the average value of the

waveform using the accumulated values of the area and time. A line is

then skipped; and the average value is displayed with the remaining

cout statements. Brackets have been added along the edge of the pro-

gram to help identify the various components of the program.

A program is now available that can find the average value of any

pulse waveform having up to five positive or negative pulses. It can be

placed in storage and simply called for when needed. Operations such as

the above are not available in either form of PSpice or in any commer-

cially available software package. It took the knowledge of a language

and a few minutes of time to generate a short program of lifetime value.

Two runs will clearly reveal what will be displayed and how the out-

put will appear. The waveform of Fig. 13.79 has five levels, entered as

shown in the output file of Fig. 13.80. As indicated the average value is

1.6 V. The waveform of Fig. 13.81 has only three pulses, and the time

0

–3 V

1 2 3 4 t (ms)

v

5

8 V

4 V

–1 V

T

0 V

FIG. 13.79
Waveform with five pulses to be analyzed by

the C11 program of Fig. 13.78.
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interval for each is different. Note the manner in which the time inter-

vals were entered. Each is entered as a multiplier of the standard unit of

measure for the horizontal axis. The variable levels will be only 3,

requiring only three iterations of the for statement. The result is a neg-

ative value of 20.933 V, as shown in the output file of Fig. 13.82.

0

–6 V

1 2 3 t (ms)

v

4

10 V

4 V

T

FIG. 13.81
Waveform with three pulses to be analyzed by

the C11 program of Fig. 13.78.

FIG. 13.80
Output results for the waveform of Fig. 13.79.

FIG. 13.82
Output results for the waveform of Fig. 13.81.

PROBLEMS
SECTION 13.2 Sinusoidal ac Voltage Characteristics
and Definitions

1. For the periodic waveform of Fig. 13.83:

a. Find the period T.

b. How many cycles are shown?

c. What is the frequency?

*d. Determine the positive amplitude and peak-to-peak

value (think!).

v (V)

5

0 6 8 10 16 18 20 t (ms)

FIG. 13.83
Problem 1.
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2. Repeat Problem 1 for the periodic waveform of Fig.

13.84.

0 5 10 15 20 25 30 35
t (ms)

10

–10

v (V)

FIG. 13.84
Problems 2, 9, and 47.

3. Determine the period and frequency of the sawtooth

waveform of Fig. 13.85.

36261660

20

v (V)

t (ms)

FIG. 13.85
Problems 3 and 48.

4. Find the period of a periodic waveform whose frequency is

a. 25 Hz. b. 35 MHz.

c. 55 kHz. d. 1 Hz.

5. Find the frequency of a repeating waveform whose

period is

a. 1/60 s. b. 0.01 s.

c. 34 ms. d. 25 ms.

6. Find the period of a sinusoidal waveform that completes

80 cycles in 24 ms.

7. If a periodic waveform has a frequency of 20 Hz, how

long (in seconds) will it take to complete five cycles?

8. What is the frequency of a periodic waveform that com-

pletes 42 cycles in 6 s?

9. Sketch a periodic square wave like that appearing in Fig.

13.84 with a frequency of 20,000 Hz and a peak value of

10 mV.

10. For the oscilloscope pattern of Fig. 13.86:

a. Determine the peak amplitude.

b. Find the period.

c. Calculate the frequency.

Redraw the oscilloscope pattern if a 125-mV dc level

were added to the input waveform.

Vertical sensitivity = 50 mV/div.
Horizontal sensitivity = 10    s/div.m

FIG. 13.86
Problem 10.
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SECTION 13.3 The Sine Wave
11. Convert the following degrees to radians:

a. 45° b. 60°

c. 120° d. 270°

e. 178° f. 221°

12. Convert the following radians to degrees:

a. p/4 b. p/6

c. }
1

1

0
}p d. }

7

6
}p

e. 3p f. 0.55p

13. Find the angular velocity of a waveform with a period of

a. 2 s. b. 0.3 ms.

c. 4 ms. d. }
2

1

6
} s.

14. Find the angular velocity of a waveform with a frequency

of

a. 50 Hz. b. 600 Hz.

c. 2 kHz. d. 0.004 MHz.

15. Find the frequency and period of sine waves having an

angular velocity of

a. 754 rad/s. b. 8.4 rad/s.

c. 6000 rad/s. d. }
1

1

6
} rad/s.

16. Given f 5 60 Hz, determine how long it will take the

sinusoidal waveform to pass through an angle of 45°.

17. If a sinusoidal waveform passes through an angle of 30°

in 5 ms, determine the angular velocity of the waveform.

SECTION 13.4 General Format for the Sinusoidal
Voltage or Current
18. Find the amplitude and frequency of the following

waves:

a. 20 sin 377t b. 5 sin 754t

c. 106 sin 10,000t d. 0.001 sin 942t

e. 27.6 sin 43.6t f. (}
4

1

2
}) sin 6.283t

19. Sketch 5 sin 754t with the abscissa

a. angle in degrees.

b. angle in radians.

c. time in seconds.

20. Sketch 106 sin 10,000t with the abscissa

a. angle in degrees.

b. angle in radians.

c. time in seconds.

21. Sketch 27.6 sin 43.6t with the abscissa

a. angle in degrees.

b. angle in radians.

c. time in seconds.

22. If e 5 300 sin 157t, how long (in seconds) does it take

this waveform to complete 1/2 cycle?

23. Given i 5 0.5 sin a, determine i at a 5 72°.

24. Given v 5 20 sin a, determine v at a 5 1.2p.

*25. Given v 5 30 3 1023 sin a, determine the angles at

which v will be 6 mV.

*26. If v 5 40 V at a 5 30° and t 5 1 ms, determine the

mathematical expression for the sinusoidal voltage.
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SECTION 13.5 Phase Relations
27. Sketch sin(377t 1 60°) with the abscissa

a. angle in degrees.

b. angle in radians.

c. time in seconds.

28. Sketch the following waveforms:

a. 50 sin(qt 1 0°) b. 220 sin(qt 1 2°)

c. 5 sin(qt 1 60°) d. 4 cos qt

e. 2 cos(qt 1 10°) f. 25 cos(qt 1 20°)

29. Find the phase relationship between the waveforms of

each set:

a. v 5 4 sin(qt 1 50°)

i 5 6 sin(qt 1 40°)

b. v 5 25 sin(qt 2 80°)

i 5 5 3 1023 sin(qt 2 10°)

c. v 5 0.2 sin(qt 2 60°)

i 5 0.1 sin(qt 1 20°)

d. v 5 200 sin(qt 2 210°)

i 5 25 sin(qt 2 60°)

*30. Repeat Problem 29 for the following sets:

a. v 5 2 cos(qt 2 30°) b. v 5 21 sin(qt 1 20°)

i 5 5 sin(qt 1 60°) i 5 10 sin(qt 2 70°)

c. v 5 24 cos(qt 1 90°)

i 5 22 sin(qt 1 10°)

31. Write the analytical expression for the waveforms of Fig.

13.87 with the phase angle in degrees.

v (V)

qt0

p
6

25 f  =  60 Hz

i (A)

qt0

–3 ×  10–3

f  =  1000 Hz

2
3
p

(b)(a)

FIG. 13.87
Problem 31.

32. Repeat Problem 31 for the waveforms of Fig. 13.88.

p

v (V)

qt0

0.01 f  =  25 Hz

i (A)

vt0

2 ×  10–3

f  =  10 kHz

3
4

11
18

p

(a) (b)

FIG. 13.88
Problem 32.
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*33. The sinusoidal voltage v 5 200 sin(2p1000t 1 60°) is

plotted in Fig. 13.89. Determine the time t1.

*34. The sinusoidal current i 5 4 sin(50,000t 2 40°) is plot-

ted in Fig. 13.90. Determine the time t1.

200

t1–p 0 p 2p t

60°

t1

v

FIG. 13.89
Problem 33.

4A

t1–p 0 p 2p t (ms)

40°

i

FIG. 13.90
Problem 34.

*35. Determine the phase delay in milliseconds between the

following two waveforms:

v 5 60 sin(1800t 1 20°)

i 5 1.2 sin(1800t 2 20°)

36. For the oscilloscope display of Fig. 13.91:

a. Determine the period of each waveform.

b. Determine the frequency of each waveform.

c. Find the rms value of each waveform.

d. Determine the phase shift between the two waveforms

and which leads or lags.
Vertical sensitivity  =  0.5 V/div.
Horizontal sensitivity  =  1 ms/div.

e i

FIG. 13.91
Problem 36.

Vertical sensitivity  =  10 mV/div.
Horizontal sensitivity  =  0.2 ms/div.

FIG. 13.92
Problem 37.

SECTION 13.6 Average Value
37. For the waveform of Fig. 13.92:

a. Determine the period.

b. Find the frequency.

c. Determine the average value.

d. Sketch the resulting oscilloscope display if the verti-

cal channel is switched from DC to AC.
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38. Find the average value of the periodic waveforms of Fig.

13.93 over one full cycle.

1

1 cycle

0 2 3 t (s)

v (V)

–3

3

6

0 4 6 t  (ms)

i  (mA)

–8

20

8

(a) (b)

FIG. 13.93
Problem 38.

39. Find the average value of the periodic waveforms of Fig.

13.94 over one full cycle.

10

v (V)

5

0

–5

–10

1 2 3 4 5 6 7 8 9 10 t (s)

1 cycle

(a)

10

5

0
–5

–10

qtp

4

p

2

p 3

2
p 2p

–15

(b)

1 cycle

Sine wave

i (mA)

FIG. 13.94
Problem 39.

*40. a. By the method of approximation, using familiar geo-

metric shapes, find the area under the curve of Fig.

13.95 from zero to 10 s. Compare your solution with

the actual area of 5 volt-seconds (V• s).

b. Find the average value of the waveform from zero to

10 s.

0

0.632

1 2 3 4 5 6 7 8 9 10 t (s)

0.007
0.019

0.049

0.135

0.368

0.993

v =  e–t
0.981

0.951

0.865

v   =  1  – e–t

v (V)

1

FIG. 13.95
Problem 40.
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*41. For the waveform of Fig. 13.96:

a. Determine the period.

b. Find the frequency.

c. Determine the average value.

d. Sketch the resulting oscilloscope display if the verti-

cal channel is switched from DC to AC.

0

1 cycle

1 2 3 4 5 6 7 8 9 10 11 12 t (s)

v (V)

3

2

1

–1

–2

FIG. 13.97
Problem 44.

0

1 cycle

1 2 3 4 5 6 7 8 9 10 11 12 t (s)

v (V)

3

2

1

–1

–2

–3

FIG. 13.98
Problem 45.

0 4 8

–10

10

v (V)

1 cycle

t (ms)

FIG. 13.99
Problem 46.

Vertical sensitivity  =  10 mV/div.
Horizontal sensitivity  =  10   s/div.                                         m

FIG. 13.96
Problem 41.SECTION 13.7 Effective (rms) Values

42. Find the rms values of the following sinusoidal wave-

forms:

a. v 5 20 sin 754t

b. v 5 7.07 sin 377t

c. i 5 0.006 sin(400t 1 20°)

d. i 5 16 3 1023 sin(377t 2 10°)

43. Write the sinusoidal expressions for voltages and cur-

rents having the following rms values at a frequency of

60 Hz with zero phase shift:

a. 1.414 V b. 70.7 V

c. 0.06 A d. 24 mA

44. Find the rms value of the periodic waveform of Fig.

13.97 over one full cycle.

45. Find the rms value of the periodic waveform of Fig.

13.98 over one full cycle.

46. What are the average and rms values of the square wave

of Fig. 13.99?

47. What are the average and rms values of the waveform of

Fig. 13.84?

48. What is the average value of the waveform of Fig. 13.85?
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49. For each waveform of Fig. 13.100, determine the period,

frequency, average value, and rms value.

SECTION 13.8 ac Meters and Instruments
50. Determine the reading of the meter for each situation of

Fig. 13.101.

Vertical sensitivity  =  0.2 V/div.
Horizontal sensitivity  =  50 ms/div.m

Vertical sensitivity  =  20 mV/div.
Horizontal sensitivity  =  10 ms/div.m

(b)(a)

Vertical sensitivity  =  20 mV/div.
Horizontal sensitivity  =  10 ms/div.m

FIG. 13.100
Problem 49.

d’Arsonval movement

2 kV

rms scale
(half-wave
rectifier)

Voltmeter

(a)

+

–

Idc  =  4 mA

v  =  16 sin(377t  +  20°)

+

–

ac

(b)

FIG. 13.101
Problem 50.

SECTION 13.10 Computer Analysis
Programming Language (C11, QBASIC, Pascal, etc.)

51. Given a sinusoidal function, write a program to deter-

mine the rms value, frequency, and period.

52. Given two sinusoidal functions, write a program to deter-

mine the phase shift between the two waveforms, and

indicate which is leading or lagging.

53. Given an alternating pulse waveform, write a program to

determine the average and rms values of the waveform

over one complete cycle.

Angular velocity The velocity with which a radius vector

projecting a sinusoidal function rotates about its center.

Average value The level of a waveform defined by the con-

dition that the area enclosed by the curve above this level is

exactly equal to the area enclosed by the curve below this

level.

GLOSSARY
Alternating waveform A waveform that oscillates above

and below a defined reference level.

Amp-Clamp® A clamp-type instrument that will permit non-

invasive current measurements and that can be used as a con-

ventional voltmeter or ohmmeter.
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Cycle A portion of a waveform contained in one period of time.

Effective value The equivalent dc value of any alternating

voltage or current.

Electrodynamometer meters Instruments that can measure

both ac and dc quantities without a change in internal cir-

cuitry.

Frequency ( f ) The number of cycles of a periodic waveform

that occur in 1 second.

Frequency counter An instrument that will provide a digital

display of the frequency or period of a periodic time-vary-

ing signal.

Instantaneous value The magnitude of a waveform at any

instant of time, denoted by lowercase letters.

Oscilloscope An instrument that will display, through the use

of a cathode-ray tube, the characteristics of a time-varying

signal.

Peak amplitude The maximum value of a waveform as mea-

sured from its average, or mean, value, denoted by upper-

case letters.

Peak-to-peak value The magnitude of the total swing of

a signal from positive to negative peaks. The sum of the

absolute values of the positive and negative peak values.

Peak value The maximum value of a waveform, denoted by

uppercase letters.

Period (T ) The time interval between successive repetitions

of a periodic waveform.

Periodic waveform A waveform that continually repeats

itself after a defined time interval.

Phase relationship An indication of which of two wave-

forms leads or lags the other, and by how many degrees or

radians.

Radian (rad) A unit of measure used to define a particular

segment of a circle. One radian is approximately equal to

57.3°; 2p rad are equal to 360°.

Root-mean-square (rms) value The root-mean-square or

effective value of a waveform.

Sinusoidal ac waveform An alternating waveform of unique

characteristics that oscillates with equal amplitude above

and below a given axis.

VOM A multimeter with the capability to measure resistance

and both ac and dc levels of current and voltage.

Waveform The path traced by a quantity, plotted as a func-

tion of some variable such as position, time, degrees, tem-

perature, and so on.
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14.1 INTRODUCTION
The response of the basic R, L, and C elements to a sinusoidal voltage

and current will be examined in this chapter, with special note of how

frequency will affect the “opposing” characteristic of each element.

Phasor notation will then be introduced to establish a method of analy-

sis that permits a direct correspondence with a number of the methods,

theorems, and concepts introduced in the dc chapters.

14.2 THE DERIVATIVE
In order to understand the response of the basic R, L, and C elements to

a sinusoidal signal, you need to examine the concept of the derivative

in some detail. It will not be necessary that you become proficient in the

mathematical technique, but simply that you understand the impact of a

relationship defined by a derivative.

Recall from Section 10.11 that the derivative dx/dt is defined as the

rate of change of x with respect to time. If x fails to change at a particu-

lar instant, dx 5 0, and the derivative is zero. For the sinusoidal wave-

form, dx/dt is zero only at the positive and negative peaks (qt 5 p/2 and

#sp in Fig. 14.1), since x fails to change at these instants of time. The

derivative dx/dt is actually the slope of the graph at any instant of time.

A close examination of the sinusoidal waveform will also indicate

that the greatest change in x will occur at the instants qt 5 0, p, and 2p.

The derivative is therefore a maximum at these points. At 0 and 2p, x

increases at its greatest rate, and the derivative is given a positive sign

since x increases with time. At p, dx/dt decreases at the same rate as it

increases at 0 and 2p, but the derivative is given a negative sign since x

decreases with time. Since the rate of change at 0, p, and 2p is the

same, the magnitude of the derivative at these points is the same also.

For various values of qt between these maxima and minima, the deriv-

ative will exist and will have values from the minimum to the maximum

inclusive. A plot of the derivative in Fig. 14.2 shows that

the derivative of a sine wave is a cosine wave.

u
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FIG. 14.1
Defining those points in a sinusoidal waveform that have maximum and

minimum derivatives.

Sine wave

qt0 p

dx
dt

  =  0

p 2p

dx
dt

  =  max

dx
dt

  =  0

3
2

p

x

2
p

Cosine wave

qt0 p
2

dx
dt

  =  0

p 2p

dx
dt

dx
dt

  =  0

max

max

3
2

p

max

FIG. 14.2
Derivative of the sine wave of Fig. 14.1.

FIG. 14.3
Effect of frequency on the peak value of the derivative.

The peak value of the cosine wave is directly related to the fre-

quency of the original waveform. The higher the frequency, the steeper

the slope at the horizontal axis and the greater the value of dx/dt, as

shown in Fig. 14.3 for two different frequencies.
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Note in Fig. 14.3 that even though both waveforms (x1 and x2) have

the same peak value, the sinusoidal function with the higher frequency

produces the larger peak value for the derivative. In addition, note that

the derivative of a sine wave has the same period and frequency as

the original sinusoidal waveform.

For the sinusoidal voltage

e(t) 5 Em sin(qt 6 v)

the derivative can be found directly by differentiation (calculus) to pro-

duce the following:

e(t) 5 qEm cos(qt 6 v)

5 2pfEm cos(qt 6 v)
(14.1)

The mechanics of the differentiation process will not be discussed or

investigated here; nor will they be required to continue with the text. Note,

however, that the peak value of the derivative, 2pfEm, is a function of the

frequency of e(t), and the derivative of a sine wave is a cosine wave.

14.3 RESPONSE OF BASIC R, L, AND CELEMENTS TO A SINUSOIDAL VOLTAGE OR CURRENT
Now that we are familiar with the characteristics of the derivative of a

sinusoidal function, we can investigate the response of the basic ele-

ments R, L, and C to a sinusoidal voltage or current.

Resistor
For power-line frequencies and frequencies up to a few hundred kilo-

hertz, resistance is, for all practical purposes, unaffected by the fre-

quency of the applied sinusoidal voltage or current. For this frequency

region, the resistor R of Fig. 14.4 can be treated as a constant, and

Ohm’s law can be applied as follows. For v 5 Vm sin qt,

i 5 5 5 sin qt 5 Im sin qt

where (14.2)

In addition, for a given i,

v 5 iR 5 (Im sin qt)R 5 ImR sin qt 5 Vm sin qt

where (14.3)

A plot of v and i in Fig. 14.5 reveals that

for a purely resistive element, the voltage across and the current

through the element are in phase, with their peak values related by

Ohm’s law.

Vm 5 ImR

Im 5 }
V

R

m
}

Vm
}
R

Vm sin qt
}

R

v
}
R

d
}
dt

RESPONSE OF BASIC R, L, AND C ELEMENTS TO A SINUSOIDAL VOLTAGE OR CURRENT  577

v
+

–

i

R

FIG. 14.4
Determining the sinusoidal response for a

resistive element.

qt0 p 2p

iR

vR

Vm

Im

FIG. 14.5
The voltage and current of a resistive element

are in phase.
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Inductor
For the series configuration of Fig. 14.6, the voltage velement of the

boxed-in element opposes the source e and thereby reduces the mag-

nitude of the current i. The magnitude of the voltage across the ele-

ment is determined by the opposition of the element to the flow of

charge, or current i. For a resistive element, we have found that the

opposition is its resistance and that velement and i are determined by

velement 5 iR.

We found in Chapter 12 that the voltage across an inductor is

directly related to the rate of change of current through the coil. Conse-

quently, the higher the frequency, the greater will be the rate of change

of current through the coil, and the greater the magnitude of the volt-

age. In addition, we found in the same chapter that the inductance of a

coil will determine the rate of change of the flux linking a coil for a par-

ticular change in current through the coil. The higher the inductance,

the greater the rate of change of the flux linkages, and the greater the

resulting voltage across the coil.

The inductive voltage, therefore, is directly related to the frequency

(or, more specifically, the angular velocity of the sinusoidal ac current

through the coil) and the inductance of the coil. For increasing values

of f and L in Fig. 14.7, the magnitude of vL will increase as described

above.

Utilizing the similarities between Figs. 14.6 and 14.7, we find that

increasing levels of vL are directly related to increasing levels of oppo-

sition in Fig. 14.6. Since vL will increase with both q (5 2pf ) and L,

the opposition of an inductive element is as defined in Fig. 14.7.

We will now verify some of the preceding conclusions using a more

mathematical approach and then define a few important quantities to be

employed in the sections and chapters to follow.

For the inductor of Fig. 14.8, we recall from Chapter 12 that

vL 5 L

and, applying differentiation,

5 (Im sin qt) 5 qIm cos qt

Therefore, vL 5 L 5 L(qIm cos qt) 5 qLIm cos qt

or vL 5 Vm sin(qt 1 90°)

where Vm 5 qLIm

Note that the peak value of vL is directly related to q (5 2pf ) and L

as predicted in the discussion above.

A plot of vL and iL in Fig. 14.9 reveals that

for an inductor, vL leads iL by 90°, or iL lags vL by 90°.

If a phase angle is included in the sinusoidal expression for iL, such

as

iL 5 Im sin(qt 6 v)

then vL 5 qLIm sin(qt 6 v 1 90°)

diL
}
dt

d
}
dt

diL
}
dt

diL
}
dt

u

Opposition

e
i

+–
+ –velement

FIG. 14.6
Defining the opposition of an element to the

flow of charge through the element.

FIG. 14.7
Defining the parameters that determine the

opposition of an inductive element to the flow

of charge.

iL  = Im sin qt

L vL
+

–

FIG. 14.8
Investigating the sinusoidal response of an

inductive element.
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The opposition established by an inductor in a sinusoidal ac network

can now be found by applying Eq. (4.1):

Effect 5

which, for our purposes, can be written

Opposition 5

Substituting values, we have

Opposition 5 5 5 qL

revealing that the opposition established by an inductor in an ac sinu-

soidal network is directly related to the product of the angular velocity

(q 5 2pf ) and the inductance, verifying our earlier conclusions.

The quantity qL, called the reactance (from the word reaction) of an

inductor, is symbolically represented by XL and is measured in ohms;

that is,

(ohms, V) (14.4)

In an Ohm’s law format, its magnitude can be determined from

XL 5 (ohms, V) (14.5)

Inductive reactance is the opposition to the flow of current, which

results in the continual interchange of energy between the source and

the magnetic field of the inductor. In other words, inductive reactance,

unlike resistance (which dissipates energy in the form of heat), does not

dissipate electrical energy (ignoring the effects of the internal resistance

of the inductor).

Capacitor
Let us now return to the series configuration of Fig. 14.6 and insert the

capacitor as the element of interest. For the capacitor, however, we will

determine i for a particular voltage across the element. When this

approach reaches its conclusion, the relationship between the voltage

Vm
}
Im

XL 5 qL

qLIm
}

Im

Vm
}
Im

cause
}
effect

cause
}}
opposition
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qt0 p 2p

iL

vL
Vm

Im

p
2

3
2

p

–
p

90°

L: vL leads iL by 90°

2

FIG. 14.9
For a pure inductor, the voltage across the coil leads the current through the

coil by 90°.
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and current will be known, and the opposing voltage (velement) can be

determined for any sinusoidal current i.

Our investigation of the inductor revealed that the inductive voltage

across a coil opposes the instantaneous change in current through the

coil. For capacitive networks, the voltage across the capacitor is limited

by the rate at which charge can be deposited on, or released by, the

plates of the capacitor during the charging and discharging phases,

respectively. In other words, an instantaneous change in voltage across

a capacitor is opposed by the fact that there is an element of time

required to deposit charge on (or release charge from) the plates of a

capacitor, and V 5 Q/C.

Since capacitance is a measure of the rate at which a capacitor will

store charge on its plates,

for a particular change in voltage across the capacitor, the greater the

value of capacitance, the greater will be the resulting capacitive

current.

In addition, the fundamental equation relating the voltage across a

capacitor to the current of a capacitor [i 5 C(dv/dt)] indicates that

for a particular capacitance, the greater the rate of change of voltage

across the capacitor, the greater the capacitive current.

Certainly, an increase in frequency corresponds to an increase in the

rate of change of voltage across the capacitor and to an increase in the

current of the capacitor.

The current of a capacitor is therefore directly related to the fre-

quency (or, again more specifically, the angular velocity) and the capac-

itance of the capacitor. An increase in either quantity will result in an

increase in the current of the capacitor. For the basic configuration of

Fig. 14.10, however, we are interested in determining the opposition of

the capacitor as related to the resistance of a resistor and qL for the

inductor. Since an increase in current corresponds to a decrease in

opposition, and iC is proportional to q and C, the opposition of a capac-

itor is inversely related to q (5 2pf ) and C.

u

Opposition inversely
related to f and C

e
iC+–

+ –vC

C

FIG. 14.10
Defining the parameters that determine the opposition of a capacitive element

to the flow of the charge.

We will now verify, as we did for the inductor, some of the above

conclusions using a more mathematical approach.

For the capacitor of Fig. 14.11, we recall from Chapter 10 that

iC 5 C

and, applying differentiation,

5 (Vm sin qt) 5 qVm cos qt
d

}
dt

dvC
}
dt

dvC
}
dt

iC  =  ?

vC  = Vm sin qt

+

–
C

FIG. 14.11
Investigating the sinusoidal response of a

capacitive element.
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Therefore,

iC 5 C 5 C(qVm cos qt) 5 qCVm cos qt

or iC 5 Im sin(qt 1 90°)

where Im 5 qCVm

Note that the peak value of iC is directly related to q (5 2pf ) and C,

as predicted in the discussion above.

A plot of vC and iC in Fig. 14.12 reveals that

for a capacitor, iC leads vC by 90°, or vC lags iC by 90°.
*

If a phase angle is included in the sinusoidal expression for vC, such

as

vC 5 Vm sin(qt 6 v)

then iC 5 qCVm sin(qt 6 v 1 90°)

Applying

Opposition 5

and substituting values, we obtain

Opposition 5 5 5

which agrees with the results obtained above.

The quantity 1/qC, called the reactance of a capacitor, is symboli-

cally represented by XC and is measured in ohms; that is,

XC 5 (ohms, V) (14.6)

In an Ohm’s law format, its magnitude can be determined from

XC 5 (ohms, V) (14.7)

Capacitive reactance is the opposition to the flow of charge, which

results in the continual interchange of energy between the source and

the electric field of the capacitor. Like the inductor, the capacitor does

not dissipate energy in any form (ignoring the effects of the leakage

resistance).

In the circuits just considered, the current was given in the inductive

circuit, and the voltage in the capacitive circuit. This was done to avoid

the use of integration in finding the unknown quantities. In the induc-

tive circuit,

vL 5 L
diL
}
dt

Vm
}
Im

1
}
qC

1
}
qC

Vm
}
qCVm

Vm
}
Im

cause
}
effect

dvC
}
dt
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qt0 p 2p

iC
vC

Vm

Im

p
2

–
90°

C:  iC leads vC by 90°.

3
2

p
p
2

FIG. 14.12
The current of a purely capacitive element

leads the voltage across the element by 90°.

*A mnemonic phrase sometimes used to remember the phase relationship between the

voltage and current of a coil and capacitor is “ELI the ICE man.” Note that the L (induc-

tor) has the E before the I (e leads i by 90°), and the C (capacitor) has the I before the E

(i leads e by 90°).
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but iL 5 #vL dt (14.8)

In the capacitive circuit,

iC 5 C

but vC 5 # iC dt (14.9)

Shortly, we shall consider a method of analyzing ac circuits that will

permit us to solve for an unknown quantity with sinusoidal input with-

out having to use direct integration or differentiation.

It is possible to determine whether a network with one or more ele-

ments is predominantly capacitive or inductive by noting the phase rela-

tionship between the input voltage and current.

If the source current leads the applied voltage, the network is

predominantly capacitive, and if the applied voltage leads the source

current, it is predominantly inductive.

Since we now have an equation for the reactance of an inductor or

capacitor, we do not need to use derivatives or integration in the

examples to be considered. Simply applying Ohm’s law, Im 5 Em/XL

(or XC), and keeping in mind the phase relationship between the volt-

age and current for each element, will be sufficient to complete the

examples.

EXAMPLE 14.1 The voltage across a resistor is indicated. Find the

sinusoidal expression for the current if the resistor is 10 V. Sketch the

curves for v and i.

a. v 5 100 sin 377t

b. v 5 25 sin(377t + 60°)

Solutions:
a. Eq. (14.2): Im 5 5 5 10 A

(v and i are in phase), resulting in

i 5 10 sin 377t

The curves are sketched in Fig. 14.13.

100 V
}
10 V

Vm
}
R

1
}
C

dvC
}
dt

1
}
L

u

a0 p 2piR

vR
Vm  =  100 V

Im  =  10 A

In phase

FIG. 14.13
Example 14.1(a).
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b. Eq. (14.2): Im 5 5 5 2.5 A

(v and i are in phase), resulting in

i 5 2.5 sin(377t 1 60°)

The curves are sketched in Fig. 14.14.

25 V
}
10 V

Vm
}
R
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–
p
2

a0

p

2pp
260°

3
2

p

iR

vRVm  =  25 V

Im  =  2.5 A

In phase

FIG. 14.14
Example 14.1(b).

EXAMPLE 14.2 The current through a 5-V resistor is given. Find the

sinusoidal expression for the voltage across the resistor for i 5

40 sin(377t 1 30°).

Solution: Eq. (14.3): Vm 5 ImR 5 (40 A)(5 V) 5 200 V

(v and i are in phase), resulting in

v 5 200 sin(377t 1 30°)

EXAMPLE 14.3 The current through a 0.1-H coil is provided. Find

the sinusoidal expression for the voltage across the coil. Sketch the v
and i curves.

a. i 5 10 sin 377t

b. i 5 7 sin(377t 2 70°)

Solutions:
a. Eq. (14.4): XL 5 qL 5 (377 rad/s)(0.1 H) 5 37.7 V

Eq. (14.5): Vm 5 ImXL 5 (10 A)(37.7 V) 5 377 V

and we know that for a coil v leads i by 90°. Therefore,

v 5 377 sin(377t 1 90°)

The curves are sketched in Fig. 14.15.

–
p
2

a0 p 2pp
2

90° iL

vL Vm  =  377 V

Im  =  10 Av leads i by 90°.

3
2

p

FIG. 14.15
Example 14.3(a).
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b. XL remains at 37.7 V.

Vm 5 ImXL 5 (7 A)(37.7 V) 5 263.9 V

and we know that for a coil v leads i by 90°. Therefore,

v 5 263.9 sin(377t 2 70° 1 90°)

and

v 5 263.9 sin(377t 1 20°)

The curves are sketched in Fig. 14.16.

u

FIG. 14.16
Example 14.3(b).

EXAMPLE 14.4 The voltage across a 0.5-H coil is provided below.

What is the sinusoidal expression for the current?

v 5 100 sin 20t

Solution:
XL 5 qL 5 (20 rad/s)(0.5 H) 5 10 V

Im 5 5 5 10 A

and we know that i lags v by 90°. Therefore,

i 5 10 sin(20t 2 90°)

EXAMPLE 14.5 The voltage across a 1-mF capacitor is provided

below. What is the sinusoidal expression for the current? Sketch the v
and i curves.

v 5 30 sin 400t

Solution:
Eq. (14.6): XC 5 5 5 5 2500 V

Eq. (14.7): Im 5 5 5 0.0120 A 5 12 mA

and we know that for a capacitor i leads v by 90°. Therefore,

i 5 12 3 10
23

sin(400t 1 90°)

30 V
}
2500 V

Vm
}
XC

106
V

}
400

1
}}}
(400 rad/s)(1 3 1026 F)

1
}
qC

100 V
}
10 V

Vm
}
XL

a

0

p 2p

iL

vL

Vm  =  263.9 V

Im  =  7 A

90°

p
2

70°

v leads i by 90°.

3
2

p
20°
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The curves are sketched in Fig. 14.17.

a0 p
90°

iC

vC

Vm  =  30 V

Im  =  12 mA

i leads v by 90°.

–
2
p

2
p 3

2
p

2p

FIG. 14.17
Example 14.5.

EXAMPLE 14.6 The current through a 100-mF capacitor is given.

Find the sinusoidal expression for the voltage across the capacitor.

i 5 40 sin(500t 1 60°)

Solution:
XC 5 5 5 5 5 20 V

Vm 5 ImXC 5 (40 A)(20 V) 5 800 V

and we know that for a capacitor, v lags i by 90°. Therefore,

v 5 800 sin(500t 1 60° 2 90°)

and v 5 800 sin(500t 2 30°)

EXAMPLE 14.7 For the following pairs of voltages and currents,

determine whether the element involved is a capacitor, an inductor, or a

resistor, and determine the value of C, L, or R if sufficient data are pro-

vided (Fig. 14.18):

a. v 5 100 sin(qt 1 40°)

i 5 20 sin(qt 1 40°)

b. v 5 1000 sin(377t 1 10°)

i 5 5 sin(377t 2 80°)

c. v 5 500 sin(157t 1 30°)

i 5 1 sin(157t 1 120°)

d. v 5 50 cos(qt 1 20°)

i 5 5 sin(qt 1 110°)

Solutions:
a. Since v and i are in phase, the element is a resistor, and

R 5 5 5 5 V

b. Since v leads i by 90°, the element is an inductor, and

XL 5 5 5 200 V

so that XL 5 qL 5 200 V or

1000 V
}

5 A

Vm
}
Im

100 V
}
20 A

Vm
}
Im

102
V

}
5

106
V

}
5 3 104

1
}}}
(500 rad/s)(100 3 1026 F)

1
}
qC

v ?

+

–

i

FIG. 14.18
Example 14.7.
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L 5 5 5 0.531 H

c. Since i leads v by 90°, the element is a capacitor, and

XC 5 5 5 500 V

so that XC 5 5 500 V or

C 5 5 5 12.74 mF

d. v 5 50 cos(qt 1 20°) 5 50 sin(qt 1 20° 1 90°)

5 50 sin(qt 1 110°)

Since v and i are in phase, the element is a resistor, and

R 5 5 5 10 V

dc, High-, and Low-Frequency Effects on L and C
For dc circuits, the frequency is zero, and the reactance of a coil is

XL 5 2pfL 5 2p(0)L 5 0 V

The use of the short-circuit equivalence for the inductor in dc circuits

(Chapter 12) is now validated. At very high frequencies, XL 5 2pf L

is very large, and for some practical applications the inductor can be

replaced by an open circuit. In equation form,

dc, f 5 0 Hz
(14.10)

and (14.11)

The capacitor can be replaced by an open-circuit equivalence in dc

circuits since f 5 0, and

XC 5 5 ⇒ ` V

once again substantiating our previous action (Chapter 10). At very

high frequencies, for finite capacitances,

XC 5

is very small, and for some practical applications the capacitor can be

replaced by a short circuit. In equation form

(14.12)

and
f 5 very high frequencies

(14.13)XC > 0 V

XC ⇒ ` V as f ⇒ 0 Hz

1
}
2pf ↑ C

1
}
2p(0)C

1
}
2pfC

XL ⇒ ` V as f ⇒ ` Hz

XL 5 0 V

50 V
}
5 A

Vm
}
Im

1
}}
(157 rad/s)(500 V)

1
}
q500 V

1
}
qC

500 V
}

1 A

Vm
}
Im

200 V
}
377 rad/s

200 V
}

q

u
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Table 14.1 reviews the preceding conclusions.
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L

C

f  =  0 Hz f  =  very high frequencies

TABLE 14.1
Effect of high and low frequencies on the circuit model of an inductor and 

a capacitor.

Phase Angle Measurements between the Applied Voltage and Source Current
Now that we are familiar with phase relationships and understand how

the elements affect the phase relationship between the applied voltage

and resulting current, the use of the oscilloscope to measure the phase

angle can be introduced. Recall from past discussions that the oscillo-

scope can be used only to display voltage levels versus time. However,

now that we realize that the voltage across a resistor is in phase with

the current through a resistor, we can consider the phase angle associ-

ated with the voltage across any resistor actually to be the phase angle

of the current. For example, suppose that we want to find the phase

angle introduced by the unknown system of Fig. 14.19(a). In Fig.

14.19(b), a resistor was added to the input leads, and the two channels

of a dual trace (most modern-day oscilloscopes can display two sig-

nals at the same time) were connected as shown. One channel will dis-

play the input voltage vi, whereas the other will display vR, as shown

in Fig. 14.19(c). However, as noted before, since vR and iR are in

phase, the phase angle appearing in Fig. 14.19(c) is also the phase

angle between vi and ii. The addition of a “sensing” resistor (a resis-

tor of a magnitude that will not adversely affect the input characteris-

tics of the system), therefore, can be used to determine the phase

angle introduced by the system and can be used to determine the mag-

nitude of the resulting current. The details of the connections that

must be made and how the actual phase angle is determined will be

left for the laboratory experience.

FIG. 14.19
Using an oscilloscope to determine the phase angle between the applied

voltage and the source current.
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vR +–

(b)

System

(a)
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14.4 FREQUENCY RESPONSE OF THE BASIC ELEMENTS
The analysis of Section 14.3 was limited to a particular applied fre-

quency. What is the effect of varying the frequency on the level of

opposition offered by a resistive, inductive, or capacitive element? We

are aware from the last section that the inductive reactance increases

with frequency while the capacitive reactance decreases. However, what

is the pattern to this increase or decrease in opposition? Does it con-

tinue indefinitely on the same path? Since applied signals may have fre-

quencies extending from a few hertz to megahertz, it is important to be

aware of the effect of frequency on the opposition level.

R
Thus far we have assumed that the resistance of a resistor is indepen-

dent of the applied frequency. However, in the real world each resistive

element has stray capacitance levels and lead inductance that are sensi-

tive to the applied frequency. However, the capacitive and inductive lev-

els involved are usually so small that their real effect is not noticed until

the megahertz range. The resistance-versus-frequency curves for a num-

ber of carbon composition resistors are provided in Fig. 14.20. Note

that the lower resistance levels seem to be less affected by the fre-

quency level. The 100-V resistor is essentially stable up to about 

300 MHz, whereas the 100-kV resistor starts its radical decline at about

15 MHz.

u

Frequency, therefore, does have impact on the resistance of an ele-

ment, but for our current frequency range of interest, we will assume

the resistance-versus-frequency plot of Fig. 14.21 (like Fig. 14.20 up to

15 MHz), which essentially specifies that the resistance level of a resis-

tor is independent of frequency.

L
For inductors, the equation

XL 5 qL 5 2pfL 5 2pLf

FIG. 14.20
Typical resistance-versus-frequency curves for carbon compound resistors.

0 5 10 15 20 f(kHz)

R

FIG. 14.21
R versus f for the range of interest.
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is directly related to the straight-line equation

y 5 mx 1 b 5 (2pL)f 1 0

with a slope (m) of 2pL and a y-intercept (b) of zero. XL is the y vari-

able and f is the x variable, as shown in Fig. 14.22.

The larger the inductance, the greater the slope (m 5 2pL) for the

same frequency range, as shown in Fig. 14.22. Keep in mind, as reem-

phasized by Fig. 14.22, that the opposition of an inductor at very low

frequencies approaches that of a short circuit, while at high frequencies

the reactance approaches that of an open circuit.

For the capacitor, the reactance equation

XC 5

can be written XC f 5

which matches the basic format of a hyperbola,

yx 5 k

with y 5 XC, x 5 f, and the constant k 5 1/(2pC).

At f 5 0 Hz, the reactance of the capacitor is so large, as shown in

Fig. 14.23, that it can be replaced by an open-circuit equivalent. As the

frequency increases, the reactance decreases, until eventually a short-

circuit equivalent would be appropriate. Note that an increase in capac-

itance causes the reactance to drop off more rapidly with frequency.

In summary, therefore, as the applied frequency increases, the

resistance of a resistor remains constant, the reactance of an inductor

increases linearly, and the reactance of a capacitor decreases

nonlinearly.

EXAMPLE 14.8 At what frequency will the reactance of a 200-mH

inductor match the resistance level of a 5-kV resistor?

Solution: The resistance remains constant at 5 kV for the frequency

range of the inductor. Therefore,

R 5 5000 V 5 XL 5 2pfL 5 2pLf

5 2p(200 3 1023 H)f 5 1.257f

and f 5 > 3.98 kHz

EXAMPLE 14.9 At what frequency will an inductor of 5 mH have the

same reactance as a capacitor of 0.1 mF?

Solution:
XL 5 XC

2pfL 5

f 2
5

and f 5 5
1

}}}}

2pÏ(5w 3w 1w0w2w3wHw)(w0w.1w 3w 1w0w2w6wFw)w
1

}
2pÏLwCw

1
}
4p2LC

1
}
2pfC

5000 Hz
}

1.257

1
}
2pC

1
}
2pfC
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XL (kV)

0 5 10 15 20 f (kHz)

XL  =  0 V at f  =  0 Hz

Increasing L

L  =  20 mH

L  =  100 mH

1

2

3

4

5

FIG. 14.22
XL versus frequency.

XC (kV)

0 5 10 15 20 f (kHz)

Increasing C

1

2

3

4

5

C =  0.01    Fm

C =  0.03    Fm

FIG. 14.23
XC versus frequency.



5 5

f 5 > 7.12 kHz

One must also be aware that commercial inductors are not ideal ele-

ments. In other words, the terminal characteristics of an inductance will

vary with several factors, such as frequency, temperature, and current.

A true equivalent for an inductor appears in Fig. 14.24. The series resis-

tance Rs represents the copper losses (resistance of the many turns of

thin copper wire); the eddy current losses (which will be described in

Chapter 19 and which are losses due to small circular currents in the

core when an ac voltage is applied); and the hysteresis losses (which

will also be described in Chapter 19 and which are losses due to core

losses created by the rapidly reversing field in the core). The capaci-

tance Cp is the stray capacitance that exists between the windings of the

inductor. For most inductors, the construction is usually such that the

larger the inductance, the lower the frequency at which the parasitic ele-

ments become important. That is, for inductors in the millihenry range

(which is very typical), frequencies approaching 100 kHz can have an

effect on the ideal characteristics of the element. For inductors in the

microhenry range, a frequency of 1 MHz may introduce negative

effects. This is not to suggest that the inductors lose their effect at these

frequencies but more that they can no longer be considered ideal

(purely inductive elements). 

105 Hz
}
14.05

1
}}}
(2p)(2.236 3 1025)

590  THE BASIC ELEMENTS AND PHASORS u

ZL

Rs

Cp

L

FIG. 14.24
Practical equivalent for an inductor.

1MHz 2MHz 4MHz 6MHz 10MHz
f (log scale)

Due to Cp

10 mH

100 mH

Due to Cp

ZL (V)

m

m

ZL ≅ 2   fLp

ZL ≅ 2   fLp

FIG. 14.25
ZL versus frequency for the practical inductor equivalent of Fig. 14.24.

Figure 14.25 is a plot of the magnitude of the impedance ZL of Fig.

14.24 versus frequency. Note that up to about 2 MHz the impedance

increases almost linearly with frequency, clearly suggesting that the

100-mH inductor is essentially ideal. However, above 2 MHz all the fac-

tors contributing to Rs will start to increase, while the reactance due to

the capacitive element Cp will be more pronounced. The dropping level

of capacitive reactance will begin to have a shorting effect across the

windings of the inductor and will reduce the overall inductive effect.

Eventually, if the frequency continues to increase, the capacitive effects

will overcome the inductive effects, and the element will actually begin

to behave in a capacitive fashion. Note the similarities of this region

with the curves of Fig. 14.23. Also note that decreasing levels of induc-

tance (available with fewer turns and therefore lower levels of Cp) will

not demonstrate the degrading effect until higher frequencies are

1
}}

2pÏ5w 3w 1w0w2w10w
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applied. In general, therefore, the frequency of application for a coil

becomes important at increasing frequencies. Inductors lose their ideal

characteristics and in fact begin to act as capacitive elements with

increasing losses at very high frequencies.

The capacitor, like the inductor, is not ideal at higher frequencies. In

fact, a transition point can be defined where the characteristics of the

capacitor will actually be inductive. The complete equivalent model for

a capacitor is provided in Fig. 14.26. The resistance Rs, defined by the

resistivity of the dielectric (typically 1012
V·m or better) and the case

resistance, will determine the level of leakage current to expect during

the discharge cycle. In other words, a charged capacitor can discharge

both through the case and through the dielectric at a rate determined by

the resistance of each path. Depending on the capacitor, the discharge

time can extend from a few seconds for some electrolytic capacitors to

hours (paper) or perhaps days (polystyrene). Inversely, therefore, elec-

trolytics obviously have much lower levels of Rs than paper or poly-

styrene. The resistance Rp reflects the energy lost as the atoms continu-

ally realign themselves in the dielectric due to the applied alternating ac

voltage. Molecular friction is present due to the motion of the atoms as

they respond to the alternating applied electric field. Interestingly

enough, however, the relative permittivity will decrease with increasing

frequencies but will eventually take a complete turnaround and begin to

increase at very high frequencies. The inductance Ls includes the induc-

tance of the capacitor leads and any inductive effects introduced by

the design of the capacitor. Be aware that the inductance of the leads

is about 0.05 mH per centimeter or 0.2 mH for a capacitor with two

2-cm leads—a level that can be important at high frequencies. As for

the inductor, the capacitor will behave quite ideally for the low- and

mid-frequency range, as shown by the plot of Fig. 14.27 for a 0.01-mF
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C

Rp (leakage)

Ls (leads)

Rs (dielectric loss)

FIG. 14.26
Practical equivalent for a capacitor.

Inductive characteristics
due to Ls

1 f (MHz–
log scale)

2 3 4 5 6 7 8 9 10 20

0.01 mFm

20

10

Z (V)

XC ≅ 1
2   fCp

FIG. 14.27
Impedance characteristics of a 0.01-mF metalized film capacitor versus

frequency.

metalized film capacitor with 2-cm leads. As the frequency increases,

however, and the reactance Xs becomes larger, a frequency will eventu-

ally be reached where the reactance of the coil equals that of the capac-

itor (a resonant condition to be described in Chapter 20). Any additional

increase in frequency will simply result in Xs being greater than XC, and

the element will behave like an inductor. In general, therefore, the fre-

quency of application is important for capacitive elements because
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there comes a point with increasing frequency when the element will

take on inductive characteristics. It also points out that the frequency of

application defines the type of capacitor (or inductor) that would be

applied: Electrolytics are limited to frequencies up to perhaps 10 kHz,

while ceramic or mica can handle frequencies beyond 10 MHz.

The expected temperature range of operation can have an important

impact on the type of capacitor chosen for a particular application.

Electrolytics, tantalum, and some high-k ceramic capacitors are very

sensitive to colder temperatures. In fact, most electrolytics lose 20% of

their room-temperature capacitance at 0°C (freezing). Higher tempera-

tures (up to 100°C or 212°F) seem to have less of an impact in general

than colder temperatures, but high-k ceramics can lose up to 30% of

their capacitance level at 100°C compared to room temperature. With

exposure and experience, you will learn the type of capacitor employed

for each application, and concern will arise only when very high fre-

quencies, extreme temperatures, or very high currents or voltages are

encountered.

14.5 AVERAGE POWER AND POWER FACTOR
For any load in a sinusoidal ac network, the voltage across the load and

the current through the load will vary in a sinusoidal nature. The ques-

tions then arise, How does the power to the load determined by the

product v·i vary, and what fixed value can be assigned to the power

since it will vary with time?

If we take the general case depicted in Fig. 14.28 and use the fol-

lowing for v and i:

v 5 Vm sin(qt 1 vv)

i 5 Im sin(qt 1 vi)

then the power is defined by

p 5 vi 5 Vm sin(qt 1 vv)Im sin(qt 1 vi)

5 VmIm sin(qt 1 vv) sin(qt 1 vi)

Using the trigonometric identity

sin A sin B 5

the function sin(qt 1 vv) sin(qt 1 vi) becomes

sin(qt 1 vv) sin(qt 1 vi)

5

5

so that Fixed value Time-varying (function of t)

p 5 3 cos(vv 2 vi)4 2 3 cos(2qt 1 vv 1 vi)4
A plot of v, i, and p on the same set of axes is shown in Fig. 14.29.

Note that the second factor in the preceding equation is a cosine

wave with an amplitude of VmIm /2 and with a frequency twice that of

VmIm
}

2

VmIm
}

2

cos(vv 2 vi) 2 cos(2qt 1 vv 1 vi)
}}}}

2

cos[(qt 1 vv) 2 (qt 1 vi)] 2 cos[(qt 1 vv) 1 (qt 1 vi)]
}}}}}}}

2

cos(A 2 B) 2 cos(A 1 B)
}}}

2

u

                 

Loadv
P

i

+

–

FIG. 14.28
Determining the power delivered in a 

sinusoidal ac network.
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the voltage or current. The average value of this term is zero over one

cycle, producing no net transfer of energy in any one direction.

The first term in the preceding equation, however, has a constant

magnitude (no time dependence) and therefore provides some net trans-

fer of energy. This term is referred to as the average power, the reason

for which is obvious from Fig. 14.29. The average power, or real

power as it is sometimes called, is the power delivered to and dissi-

pated by the load. It corresponds to the power calculations performed

for dc networks. The angle (vv 2 vi) is the phase angle between v and

i. Since cos(2a) 5 cos a,

the magnitude of average power delivered is independent of whether

v leads i or i leads v.

Defining v as equal to |vv 2 vi|, where | | indicates that only the mag-

nitude is important and the sign is immaterial, we have

(watts, W) (14.14)

where P is the average power in watts. This equation can also be

written

P 5 1 21 2 cos v

or, since Veff 5 and Ieff 5

Equation (14.14) becomes

(14.15)

Let us now apply Eqs. (14.14) and (14.15) to the basic R, L, and C

elements.

Resistor
In a purely resistive circuit, since v and i are in phase, |vv 2 vi| 5 v 5

0°, and cos v 5 cos 0° 5 1, so that

P 5 VeffIeff cos v

Im
}
Ï2w

Vm
}
Ï2w

Im
}
Ï2w

Vm
}
Ï2w

P 5 }
Vm

2

Im
} cos v
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0

p

v

i

Pav

  iθ

  vθ

   tv

Vm Im

2
cos(  v  –   i)θ θ

Vm Im

2

FIG. 14.29
Defining the average power for a sinusoidal ac network.
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(W) (14.16)

Or, since Ieff 5

then (W) (14.17)

Inductor
In a purely inductive circuit, since v leads i by 90°, |vv 2 vi| 5 v 5

|290°| 5 90°. Therefore,

P 5 cos 90° 5 (0) 5 0 W

The average power or power dissipated by the ideal inductor (no

associated resistance) is zero watts.

Capacitor
In a purely capacitive circuit, since i leads v by 90°, |vv 2 vi| 5 v 5

|290°| 5 90°. Therefore,

P 5 cos(90°) 5 (0) 5 0 W

The average power or power dissipated by the ideal capacitor (no

associated resistance) is zero watts.

EXAMPLE 14.10 Find the average power dissipated in a network

whose input current and voltage are the following:

i 5 5 sin(qt 1 40°)

v 5 10 sin(qt 1 40°)

Solution: Since v and i are in phase, the circuit appears to be purely

resistive at the input terminals. Therefore,

P 5 5 5 25 W

or R 5 5 5 2 V

and P 5 5 5 25 W

or P 5 I 2
eff R 5 [(0.707)(5 A)]2(2) 5 25 W

For the following example, the circuit consists of a combination of

resistances and reactances producing phase angles between the input

current and voltage different from 0° or 90°.

[(0.707)(10 V)]2

}}
2

V 2
eff

}
R

10 V
}
5 A

Vm
}
Im

(10 V)(5 A)
}}

2

VmIm
}

2

VmIm
}

2

VmIm
}

2

VmIm
}

2

VmIm
}

2

P 5 }
V

R

2
eff
} 5 I2

effR

Veff
}

R

P 5 }
Vm

2

Im
} 5 VeffIeff

u
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EXAMPLE 14.11 Determine the average power delivered to networks

having the following input voltage and current:

a. v 5 100 sin(qt 1 40°)

i 5 20 sin(qt 1 70°)

b. v 5 150 sin(qt 2 70°)

i 5 3 sin(qt 2 50°)

Solutions:
a. Vm 5 100, vv 5 40°

Im 5 20, vi 5 70°

v 5 |vv 2 vi| 5 |40° 2 70°| 5 |230°| 5 30°

and

P 5 cos v 5 cos(30°) 5 (1000 W)(0.866)

5 866 W

b. Vm 5 150 V, vv 5 270°

Im 5 3 A, vi 5 250°

v 5 |vv 2 vi| 5 |270° 2 (250°)|
5 |270° 1 50°| 5 |220°| 5 20°

and

P 5 cos v 5 cos(20°) 5 (225 W)(0.9397)

5 211.43 W

Power Factor
In the equation P 5 (Vm Im /2)cos v, the factor that has significant con-

trol over the delivered power level is the cos v. No matter how large the

voltage or current, if cos v 5 0, the power is zero; if cos v 5 1, the

power delivered is a maximum. Since it has such control, the expression

was given the name power factor and is defined by

(14.18)

For a purely resistive load such as the one shown in Fig. 14.30, the

phase angle between v and i is 0° and Fp 5 cos v5 cos 0° 5 1. The power

delivered is a maximum of (VmIm/2) cos v 5 ((100 V)(5 A)/2) ? (1) 5

250 W.

For a purely reactive load (inductive or capacitive) such as the one

shown in Fig. 14.31, the phase angle between v and i is 90° and Fp 5

cos v 5 cos 90° 5 0. The power delivered is then the minimum value

of zero watts, even though the current has the same peak value as

that encountered in Fig. 14.30.

For situations where the load is a combination of resistive and

reactive elements, the power factor will vary between 0 and 1. The

more resistive the total impedance, the closer the power factor is to

1; the more reactive the total impedance, the closer the power factor

is to 0.

In terms of the average power and the terminal voltage and cur-

rent,

Power factor 5 Fp 5 cos v

(150 V)(3 A)
}}

2

VmIm
}

2

(100 V)(20 A)
}}

2

VmIm
}

2
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Im = 5 A

R 20 V100 VEm

+

–

Fp = 1

Pmax = 250 W

FIG. 14.30
Purely resistive load with Fp 5 1.

Im = 5 A

100 VEm

+

–

Fp = 0

P = 0 W

XL 20 V

FIG. 14.31
Purely inductive load with Fp 5 0.



Imaginary axis ( j )

+

–

Real axis

–

+

LOAD

Ieff = 5 A

Fp = ? Veff = 20 V

P = 100 W

+

–
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(14.19)

The terms leading and lagging are often written in conjunction with

the power factor. They are defined by the current through the load. If

the current leads the voltage across a load, the load has a leading

power factor. If the current lags the voltage across the load, the load

has a lagging power factor. In other words,

capacitive networks have leading power factors, and inductive

networks have lagging power factors.

The importance of the power factor to power distribution systems is

examined in Chapter 19. In fact, one section is devoted to power-factor

correction.

EXAMPLE 14.12 Determine the power factors of the following loads,

and indicate whether they are leading or lagging:

a. Fig. 14.32

b. Fig. 14.33

c. Fig. 14.34

Solutions:
a. Fp 5 cos v 5 cos |40° 2 (220°)| 5 cos 60° 5 0.5 leading

b. Fp 5 cos v |80° 2 30°| 5 cos 50° 5 0.6428 lagging

c. Fp 5 cos v 5 5 5 5 1

The load is resistive, and Fp is neither leading nor lagging.

14.6 COMPLEX NUMBERS
In our analysis of dc networks, we found it necessary to determine the

algebraic sum of voltages and currents. Since the same will also be true

for ac networks, the question arises, How do we determine the algebraic

sum of two or more voltages (or currents) that are varying sinusoidally?

Although one solution would be to find the algebraic sum on a point-to-

point basis (as shown in Section 14.12), this would be a long and

tedious process in which accuracy would be directly related to the scale

employed.

It is the purpose of this chapter to introduce a system of complex

numbers that, when related to the sinusoidal ac waveform, will result

in a technique for finding the algebraic sum of sinusoidal waveforms

that is quick, direct, and accurate. In the following chapters, the tech-

nique will be extended to permit the analysis of sinusoidal ac networks

in a manner very similar to that applied to dc networks. The methods

and theorems as described for dc networks can then be applied to sinu-

soidal ac networks with little difficulty.

A complex number represents a point in a two-dimensional plane

located with reference to two distinct axes. This point can also deter-

mine a radius vector drawn from the origin to the point. The horizontal

axis is called the real axis, while the vertical axis is called the imagi-

nary axis. Both are labeled in Fig. 14.35. Every number from zero to

6∞ can be represented by some point along the real axis. Prior to the

development of this system of complex numbers, it was believed that

100 W
}
100 W

100 W
}}
(20 V)(5 A)

P
}
VeffIeff

Fp 5 cos v 5 }
Vef

P

fIeff

}

u

i = 2 sin(   t + 40°)ω

Fp = ? Load

+

–

v = 50 sin(   t – 20°)ω

FIG. 14.32
Example 14.12(a).

FIG. 14.33
Example 14.12(b).

FIG. 14.34
Example 14.12(c).

FIG. 14.35
Defining the real and imaginary axes of a

complex plane.
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0
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–j

j
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– +
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any number not on the real axis would not exist—hence the term imag-

inary for the vertical axis.

In the complex plane, the horizontal or real axis represents all posi-

tive numbers to the right of the imaginary axis and all negative numbers

to the left of the imaginary axis. All positive imaginary numbers are

represented above the real axis, and all negative imaginary numbers,

below the real axis. The symbol j (or sometimes i) is used to denote the

imaginary component.

Two forms are used to represent a complex number: rectangular

and polar. Each can represent a point in the plane or a radius vector

drawn from the origin to that point.

14.7 RECTANGULAR FORM
The format for the rectangular form is

(14.20)

as shown in Fig. 14.36. The letter C was chosen from the word “com-

plex.” The boldface notation is for any number with magnitude and

direction. The italic is for magnitude only.

EXAMPLE 14.13 Sketch the following complex numbers in the com-

plex plane:

a. C 5 3 1 j 4

b. C 5 0 2 j 6

c. C 5 210 2 j20

Solutions:
a. See Fig. 14.37.

b. See Fig. 14.38.

c. See Fig. 14.39.

C 5 X 1 jY

POLAR FORM  597

FIG. 14.36
Defining the rectangular form.

FIG. 14.37
Example 14.13(a).

FIG. 14.38
Example 14.13(b).

FIG. 14.39
Example 14.13(c).

14.8 POLAR FORM
The format for the polar form is

(14.21)

with the letter Z chosen from the sequence X, Y, Z.

C 5 Z /v



+–

–j

j

C = 4.2 / 240°

4.2

+240°

–120°

C = – 4.2 / 60° = 4.2 / 60° + 180°
= 4.2 / + 240°

+–

–j

j

7
–120°

C = 7/–120°

+–

–j

j

X

Y

C = Z /    = X + jYθ

θ

Z

+–

–j

j

C = 5 / 30°

+30°
5

+–

–j

j

θ

– C

C

p

p

+–

–j

j

Z
C

θ
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where Z indicates magnitude only and v is always measured counter-

clockwise (CCW) from the positive real axis, as shown in Fig. 14.40.

Angles measured in the clockwise direction from the positive real axis

must have a negative sign associated with them.

A negative sign in front of the polar form has the effect shown in

Fig. 14.41. Note that it results in a complex number directly opposite

the complex number with a positive sign.

(14.22)

EXAMPLE 14.14 Sketch the following complex numbers in the com-

plex plane:

a. C 5 5 /30°

b. C 5 7 /2120°

c. C 5 24.2 /60°

Solutions:
a. See Fig. 14.42.

b. See Fig. 14.43.

c. See Fig. 14.44.

2C 5 2Z /v 5 Z /v 6 180°

u

FIG. 14.40
Defining the polar form.

FIG. 14.41
Demonstrating the effect of a negative sign on

the polar form.

FIG. 14.42
Example 14.14(a).

FIG. 14.43
Example 14.14(b).

FIG. 14.44
Example 14.14(c).

14.9 CONVERSION BETWEEN FORMS
The two forms are related by the following equations, as illustrated in

Fig. 14.45.

Rectangular to Polar

(14.23)

(14.24)v 5 tan21
}
X

Y
}

Z 5 ÏXw2w1w Yw2w

FIG. 14.45
Conversion between forms.



+–

–j

j C = 3 + j4

Z

θ

+3

+4

u

Polar to Rectangular
(14.25)

(14.26)Y 5 Z sin v

X 5 Z cos v
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FIG. 14.46
Example 14.15.

FIG. 14.47
Example 14.16.

–j

+

3

b

C  =  – 6  + j3 j

–

v

Z

6

FIG. 14.48
Example 14.17.

EXAMPLE 14.15 Convert the following from rectangular to polar

form:

C 5 3 1 j 4 (Fig. 14.46)

Solution:
Z 5 Ï(3w)2w 1w (w4w)2w 5 Ï2w5w 5 5

v 5 tan211 2 5 53.13°

and C 5 5 /53.13°

4
}
3

EXAMPLE 14.16 Convert the following from polar to rectangular

form:

C 5 10 /45° (Fig. 14.47)

Solution:
X 5 10 cos 45° 5 (10)(0.707) 5 7.07

Y 5 10 sin 45° 5 (10)(0.707) 5 7.07

and C 5 7.07 1 j7.07

If the complex number should appear in the second, third, or fourth

quadrant, simply convert it in that quadrant, and carefully determine the

proper angle to be associated with the magnitude of the vector.

EXAMPLE 14.17 Convert the following from rectangular to polar

form:

C 5 26 1 j 3 (Fig. 14.48)

Solution:
Z 5 Ï(6w)2w 1w (w3w)2w 5 Ï4w5w 5 6.71

b 5 tan211 2 5 26.57°

v 5 180° 2 26.57° 5 153.43°

and C 5 6.71 /153.43°

3
}
6



–j

j

C

Complex conjugate of C

+

30°

–30°

2

2

–j

j C = 2 + j3

2

3

–3

Complex conjugate of C
C = 2 – j3

+
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EXAMPLE 14.18 Convert the following from polar to rectangular

form:

C 5 10 /230° (Fig. 14.49)

Solution:
X5 Z cos b 5 10 cos(230° 2 180°) 5 10 cos 50°

5 (10)(0.6428) 5 6.428

Y 5 Z sin b 5 10 sin 50° 5 (10)(0.7660) 5 7.660

and C 5 26.428 2 j7.660

14.10 MATHEMATICAL OPERATIONS WITHCOMPLEX NUMBERS
Complex numbers lend themselves readily to the basic mathematical

operations of addition, subtraction, multiplication, and division. A few

basic rules and definitions must be understood before considering these

operations.

Let us first examine the symbol j associated with imaginary num-

bers. By definition,

(14.27)

Thus, (14.28)

and j3
5 j 2j 5 21j 5 2j

with j 4
5 j 2j 2

5 (21)(21) 5 11

j 5
5 j

and so on. Further,

5 (1)1 2 5 1 21 2 5 }
j

j
2
} 5

and (14.29)

Complex Conjugate
The conjugate or complex conjugate of a complex number can be

found by simply changing the sign of the imaginary part in the rectan-

gular form or by using the negative of the angle of the polar form. For

example, the conjugate of

C 5 2 1 j3

is 2 2 j3

as shown in Fig. 14.50. The conjugate of

C 5 2 /30°

is 2 /230°

as shown in Fig. 14.51.

}
1

j
} 5 2j

j
}
21

1
}
j

j
}
j

1
}
j

1
}
j

j 2
5 21

j 5 Ï2w1w

u

+

Y

v  =  230°

C  =  10∠230°

–j

j

–

Z = 10

X

b

FIG. 14.49
Example 14.18.

FIG. 14.50
Defining the complex conjugate of a complex

number in rectangular form.

FIG. 14.51
Defining the complex conjugate of a complex

number in polar form.



–j

j

+

C1

C1 + C2

C2

6

4

0 2 4 6–2–4–6–8

8

10

2

–j

j

+

C1

C1 + C2

C2

6

4

2

0 2 4 6

u

Reciprocal
The reciprocal of a complex number is 1 divided by the complex num-

ber. For example, the reciprocal of

C 5 X 1 j Y

is

and of Z /v,

We are now prepared to consider the four basic operations of

addition, subtraction, multiplication, and division with complex num-

bers.

Addition
To add two or more complex numbers, simply add the real and imagi-

nary parts separately. For example, if

C1 5 6X1 6 j Y1 and C2 5 6X2 6 j Y2

then (14.30)

There is really no need to memorize the equation. Simply set one above

the other and consider the real and imaginary parts separately, as shown

in Example 14.19.

EXAMPLE 14.19
a. Add C1 5 2 1 j 4 and C2 5 3 1 j 1.

b. Add C1 5 3 1 j 6 and C2 5 26 1 j 3.

Solutions:
a. By Eq. (14.30),

C1 1 C2 5 (2 1 3) 1 j(4 1 1) 5 5 1 j5

Note Fig. 14.52. An alternative method is

2 1 j 4

3 1 j 1

C1 1 C2 5 (6X1 6 X2) 1 j (6Y1 6 Y2)

1
}
Z /v

1
}
X 1 j Y
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FIG. 14.52
Example 14.19(a).

FIG. 14.53
Example 14.19(b).

5 1 j5

b. By Eq. (14.30),

C1 1 C2 5 (3 2 6) 1 j(6 1 3) 5 23 1 j9

Note Fig. 14.53. An alternative method is

3 1 j 6

26 1 j 3

23 1 j9
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j
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–j
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+
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2
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Subtraction
In subtraction, the real and imaginary parts are again considered sepa-

rately. For example, if

C1 5 6X1 6 j Y1 and C2 5 6X2 6 j Y2

then

(14.31)

Again, there is no need to memorize the equation if the alternative

method of Example 14.20 is employed.

EXAMPLE 14.20
a. Subtract C2 5 1 1 j 4 from C1 5 4 1 j 6.

b. Subtract C2 5 22 1 j 5 from C1 5 13 1 j 3.

Solutions:
a. By Eq. (14.31),

C1 2 C2 5 (4 2 1) 1 j (6 2 4) 5 3 1 j2

Note Fig. 14.54. An alternative method is

4 1 j 6

2(1 1 j 4)

3 1 j2

b. By Eq. (14.31),

C1 2 C2 5 [3 2 (22)] 1 j (3 2 5) 5 5 2 j2

Note Fig. 14.55. An alternative method is

3 1 j 3

2(22 1 j 5)

5 2 j2

Addition or subtraction cannot be performed in polar form unless the

complex numbers have the same angle v or unless they differ only by

multiples of 180°.

EXAMPLE 14.21
a. 2 /45° 1 3 /45° 5 5 /45°

Note Fig. 14.56. Or

b. 2 /0° 2 4 /180° 5 6 /0°

Note Fig. 14.57.

C1 2 C2 5 [6X2 2 (6X2)] 1 j[6Y1 2 (6Y2)]

u

FIG. 14.54
Example 14.20(a).

FIG. 14.55
Example 14.20(b).

FIG. 14.56
Example 14.21(a).



u

Multiplication
To multiply two complex numbers in rectangular form, multiply the

real and imaginary parts of one in turn by the real and imaginary parts

of the other. For example, if

C1 5 X1 1 j Y1 and C2 5 X2 1 j Y2

then C1 ⋅ C2: X1 1 j Y1

and (14.32)

In Example 14.22(b), we obtain a solution without resorting to mem-

orizing Eq. (14.32). Simply carry along the j factor when multiplying

each part of one vector with the real and imaginary parts of the other.

EXAMPLE 14.22
a. Find C1 ⋅ C2 if

C1 5 2 1 j 3 and C2 5 5 1 j 10

b. Find C1 ⋅ C2 if

C1 5 22 2 j 3 and C2 5 14 2 j 6

Solutions:
a. Using the format above, we have

C1 ⋅ C25 [(2)(5) 2 (3)(10)] 1 j [(3)(5) 1 (2)(10)]

5 220 1 j35

b. Without using the format, we obtain

22 2 j 3

14 2 j 6

28 2 j 12

1 j 12 1 j 218

28 1 j (212 1 12) 2 18

and C1 ⋅ C2 5 226 5 26 /180°

C1 ⋅ C2 5 (X1X2 2 Y1Y2) 1 j (Y1X2 1 X1Y2)

1 j X1Y2 1 j 2Y1Y2
}}}}
X1X2 1 j (X1Y1X2 1 X1Y2) 1 Y1Y2(21)

X2 1 j Y2
}}
X1X2 1 j Y1X2
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FIG. 14.57
Example 14.21(b).
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In polar form, the magnitudes are multiplied and the angles added

algebraically. For example, for

C1 5 Z1 /v1 and C2 5 Z2 /v2

we write

(14.33)

EXAMPLE 14.23
a. Find C1 ⋅ C2 if

C1 5 5 /20° and C2 5 10 /30°

b. Find C1 ⋅ C2 if

C1 5 2 /240° and C2 5 7 /1120°

Solutions:
a. C1 ⋅ C2 5 (5 /20°)(10 /30°) 5 (5)(10) /20° 1 30° 5 50 /50°

b. C1 ⋅ C2 5 (2 /240°)(7 /1120°) 5 (2)(7) /240° 1 120°

5 14 /180°

To multiply a complex number in rectangular form by a real number

requires that both the real part and the imaginary part be multiplied by

the real number. For example,

(10)(2 1 j 3) 5 20 1 j 30

and 50 /0°(0 1 j 6) 5 j 300 5 300 /90°

Division
To divide two complex numbers in rectangular form, multiply the

numerator and denominator by the conjugate of the denominator and

the resulting real and imaginary parts collected. That is, if

C1 5 X1 1 jY1 and C2 5 X2 1 jY2

then 5

5

and 5 1 j (14.34)

The equation does not have to be memorized if the steps above used

to obtain it are employed. That is, first multiply the numerator by the

complex conjugate of the denominator and separate the real and imagi-

nary terms. Then divide each term by the sum of each term of the

denominator squared.

EXAMPLE 14.24
a. Find C1/C2 if C1 5 1 1 j 4 and C2 5 4 1 j 5.

b. Find C1/C2 if C1 5 24 2 j 8 and C2 5 16 2 j 1.

X2Y1 2 X1Y2
}}

X2
2 1 Y2

2

X1X2 1 Y1Y2
}}

X2
2 1 Y2

2

C1
}
C2

(X1X2 1 Y1Y2) 1 j(X2Y1 2 X1Y2)
}}}}

X2
2 1 Y2

2

(X1 1 jY1)(X2 2 jY2)
}}}
(X2 1 jY2)(X2 2 jY2)

C1
}
C2

C1 ⋅ C2 5 Z1Z2 / v1 1 v2

u



u

Solutions:
a. By Eq. (14.34),

5 1 j

5 1 > 0.585 1 j 0.268

b. Using an alternative method, we obtain

24 2 j 8

16 1 j 1

224 2 j 48

2 j 4 2 j28

224 2 j 52 1 8 5 216 2 j 52

16 2 j 1

16 1 j 1

36 1 j 6

2 j 6 2 j21

36 10 1 1 5 37

and 5 2 5 20.432 2j1.405

To divide a complex number in rectangular form by a real number,

both the real part and the imaginary part must be divided by the real

number. For example,

5 4 1 j 5

and 5 3.4 2j 0 5 3.4 /0°

In polar form, division is accomplished by simply dividing the mag-

nitude of the numerator by the magnitude of the denominator and sub-

tracting the angle of the denominator from that of the numerator. That

is, for

C1 5 Z1 /v1 and C2 5 Z2 /v2

we write

5 /v1 2 v2 (14.35)

EXAMPLE 14.25
a. Find C1/C2 if C1 5 15 /10° and C2 5 2 /7°.

b. Find C1/C2 if C1 5 8 /120° and C2 5 16 /250°.

Solutions:
a. 5 5 /10° 2 7° 5 7.5 /3°

15
}
2

15 /10°
}
2 /7°

C1
}
C2

Z1
}
Z2

C1
}
C2

6.8 2 j 0
}}

2

8 1 j 10
}

2

j52
}
37

216
}

37

C1
}
C2

j 11
}
41

24
}
41

(4)(4) 2 (1)(5)
}}

42
1 52

(1)(4) 1 (4)(5)
}}

42
1 52

C1
}
C2
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b. 5 5 /120° 2 (250°) 5 0.5 /170°

We obtain the reciprocal in the rectangular form by multiplying the

numerator and denominator by the complex conjugate of the denomi-

nator:

5 1 21 2 5

and 5 2 j (14.36)

In polar form, the reciprocal is

5 /2v (14.37)

A concluding example using the four basic operations follows.

EXAMPLE 14.26 Perform the following operations, leaving the answer

in polar or rectangular form:

a. 5

5

5

5 5 0.983 2 j0.207

b. 5 5

5 35.35 /75° 2 (220°) 5 35.35 /95°

c. 5

5 5

5 2 /93.13° 2 (236.87°) 5 2.0 /130°

d. 3 /27° 2 6 /240° 5 (2.673 1 j 1.362) 2 (4.596 2 j 3.857)

5 (2.673 2 4.596) 1 j (1.362 1 3.857)

5 21.923 1 j 5.219

14.11 CALCULATOR AND COMPUTERMETHODS WITH COMPLEX NUMBERS
The process of converting from one form to another or working through

lengthy operations with complex numbers can be time-consuming and

20 /93.13°
}}
10 /236.87°

(4 /40°)(5 /53.13°)
}}}

10 /236.87°

(2 /20°)(2 /20°)(5 /53.13°)
}}}}

10 /236.87°

(2 /20°)2(3 1 j 4)
}}

8 2 j 6

353.5 /75°
}}
10 /220°

(50 /30°)(7.07 /45°)
}}}

10 /220°

(50 /30°)(5 1 j 5)
}}

10 /220°

114 2 j 24
}}

116

[(6)(4) 1 (9)(10)] 1 j [(4)(9) 2 (6)(10)]
}}}}}

42
1 102

(6 1 j 9)(4 2 j 10)
}}}
(4 1 j 10)(4 2 j 10)

(2 1 4) 1 j (3 1 6)
}}}
(7 2 3) 1 j (7 1 3)

(2 1 j 3) 1 (4 1 j 6)
}}}
(7 1 j 7) 2 (3 2 j 3)

1
}
Z

1
}
Z /v

Y
}
X2

1 Y2

X
}
X2

1 Y2

1
}
X 1 j Y

X 2 j Y
}
X2

1 Y2

X 2 j Y
}
X 2 j Y

1
}
X 1 j Y

1
}
X 1 j Y

8
}
16

8 /120°
}}
16 /250°

C1
}
C2

u
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often frustrating if one lost minus sign or decimal point invalidates the

solution. Fortunately, technologists of today have calculators and com-

puter methods that make the process measurably easier with higher

degrees of reliability and accuracy.

Calculators
The TI-86 calculator of Fig. 14.58 is only one of numerous calculators

that can convert from one form to another and perform lengthy calcula-

tions with complex numbers in a concise, neat form. Not all of the

details of using a specific calculator will be included here because each

has its own format and sequence of steps. However, the basic operations

with the TI-86 will be included primarily to demonstrate the ease with

which the conversions can be made and the format for more complex

operations.

For the TI-86 calculator, one must first call up the 2nd function

CPLX from the keyboard, which results in a menu at the bottom of the

display including conj, real, imag, abs, and angle. If we choose the key

MORE, c Rec and c Pol will appear as options (for the conversion

process). To convert from one form to another, simply enter the current

form in brackets with a comma between components for the rectangu-

lar form and an angle symbol for the polar form. Follow this form with

the operation to be performed, and press the ENTER key—the result

will appear on the screen in the desired format.

EXAMPLE 14.27 This example is for demonstration purposes only. It

is not expected that all readers will have a TI-86 calculator. The sole

purpose of the example is to demonstrate the power of today’s calcula-

tors.

Using the TI-86 calculator, perform the following conversions:

a. 3 2 j 4 to polar form.

b. 0.006 /20.6° to rectangular form.

Solutions:
a. The TI-86 display for part (a) is the following:
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CALC. 14.1

(0.006/20.6) c Rec ENTER
(5.616E23, 2.111E23)

CALC. 14.2

FIG. 14.58
TI-86 scientific calculator. (Courtesy of Texas 

Instruments, Inc.)

(3, 24) c Pol ENTER
(5.000E0/253.130E0)

b. The TI-86 display for part (b) is the following:

EXAMPLE 14.28 Using the TI-86 calculator, perform the desired

operations required in part (c) of Example 14.26, and compare solutions.

Solution: One must now be aware of the hierarchy of mathematical

operations. In other words, in which sequence will the calculator per-

form the desired operations? In most cases, the sequence is the same as
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that used in longhand calculations, although one must become adept at

setting up the parentheses to ensure the correct order of operations. For

this example, the TI-86 display is the following:

u

((2/20)2*(3,4))/(8,26)c Pol ENTER
(2.000E0/130.000E0)

CALC. 14.3

Mathcad
The Mathcad format for complex numbers will now be introduced in

preparation for the chapters to follow. We will continue to use j when

we define a complex number in rectangular form even though the Math-

cad result will always appear with the letter i. You can change this by

going to the Format menu, but for this presentation we decided to use

the default operators as much as possible.

When entering j to define the imaginary component of a complex

number, be sure to enter it as 1j; but do not put a multiplication opera-

tor between the 1 and the j. Just type 1 and then j. In addition, place the

j after the constant rather than before as in the text material.

When Mathcad operates on an angle, it will assume that the angle is

in radians and not degrees. Further, all results will appear in radians

rather than degrees.

The first operation to be developed is the conversion from rectangu-

lar to polar form. In Fig. 14.59 the rectangular number 4 1 j 3 is being

converted to polar form using Mathcad. First X and Y are defined using

the colon operator. Next the equation for the magnitude of the polar

form is written in terms of the two variables just defined. The magni-

tude of the polar form is then revealed by writing the variable again and

using the equal sign. It will take some practice, but be careful when

writing the equation for Z in the sense that you pay particular attention

to the location of the bracket before performing the next operation. The

resulting magnitude of 5 is as expected.

For the angle, the sequence View-Toolbars-Greek is first applied to

obtain the Greek toolbar appearing in Fig. 14.59. It can be moved to

any location by simply clicking on the blue at the top of the toolbar and

dragging it to the preferred location. Then 0 is selected from the toolbar

as the variable to be defined. The tan21 v is obtained through the

sequence Insert-f(x)-Insert Function dialog box-trigonometric-atan-

OK in which Y/X is inserted. Then bring the controlling bracket to the

outside of the entire expression, and multiply by the ratio of 180/p with

p selected from the Calculator toolbar (available from the same

sequence used to obtain the Greek toolbar). The multiplication by the

last factor of the equation will ensure that the angle is in degrees.

Selecting v again followed by an equal sign will result in the correct

angle of 36.87° as shown in Fig. 14.59.

We will now look at two forms for the polar form of a complex num-

ber. The first is defined by the basic equations introduced in this chap-

ter, while the second uses a special format. For all the Mathcad analy-

ses to be provided in this text, the latter format will be employed. First

which is a perfect match with the earlier solution.

German-American
(Breslau, Germany;
Yonkers and 
Schenectady,
NY, USA)

(1865–1923)
Mathematician,

Scientist,
Engineer, Inventor,
Professor of 
Electrical 
Engineering and 
Electrophysics,
Union College

Department Head,
General Electric Co.

Although the holder of some 200 patents and recog-

nized worldwide for his contributions to the study of

hysteresis losses and electrical transients, Charles

Proteus Steinmetz is best recognized for his contri-

bution to the study of ac networks. His “Symbolic

Method of Alternating-current Calculations” pro-

vided an approach to the analysis of ac networks

that removed a great deal of the confusion and frus-

tration experienced by engineers of that day as they

made the transition from dc to ac systems. His

approach (from which the phasor notation of this

text is premised) permitted a direct analysis of ac

systems using many of the theorems and methods of

analysis developed for dc systems. In 1897 he

authored the epic work Theory and Calculation of

Alternating Current Phenomena, which became the

“bible” for practicing engineers. Dr. Steinmetz was

fondly referred to as “The Doctor” at General Elec-

tric Company where he worked for some 30 years in

a number of important capacities. His recognition as

a “multigifted genius” is supported by the fact that

he maintained active friendships with such individu-

als as Albert Einstein, Guglielmo Marconi (radio),

and Thomas A. Edison, to name just a few. He was

President of the American Institute of Electrical

Engineers (AIEE) and the National Association of

Corporation Schools and actively supported his

local community (Schenectady) as president of the

Board of Education and the Commission on Parks

and City Planning.

CHARLES PROTEUS STEINMETZ

Courtesy of the

Hall of History Foundation,

Schenectady, New York
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the magnitude of the polar form is defined followed by the conversion

of the angle of 60° to radians by multiplying by the factor p/180 as

shown in Fig. 14.60. In this example the resulting angular measure is

p/3 radians. Next the rectangular format is defined by a real part X 5

Z cos v and by an imaginary part Y 5 Z sin v. Both the cos and the sin

are obtained by the sequence Insert-f(x)-trigonometric-cos(or sin)-

OK. Note the multiplication by j which was actually entered as 1j.

Entering C again followed by an equal sign will result in the correct

conversion shown in Fig. 14.60.

The next format is based on the mathematical relationship that e jv
5

cos v 1 j sin v. Both Z and v are as defined above, but now the complex

number is written as shown in Fig. 14.60 using the notation just intro-

duced. Note that both Z and v are part of this defining form. The ex is

obtained directly from the Calculator toolbar. Remember to enter the j

as 1j without a multiplication sign between the 1 and the j. However,

there is a multiplication operator placed between the j and v. When

entered again followed by an equal sign, the rectangular form appears

to match the above results. As mentioned above, it is this latter format

that will be used throughout the text due to its cleaner form and more

direct entering path.

The last example using Mathcad will be a confirmation of the results

of Example 14.26(b) as shown in Fig. 14.61. The three complex num-

bers are first defined as shown. Then the equation for the desired result
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FIG. 14.59
Using Mathcad to convert from rectangular to polar form.
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FIG. 14.60
Using Mathcad to convert from polar to rectangular form.

FIG. 14.61
Using Mathcad to confirm the results of Example 14.26(b).
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is entered using C4, and finally the results are called for. Note the rela-

tive simplicity of the equation for C4 now that all the other variables

have been defined. As shown, however, the immediate result is in the

rectangular form using the magnitude feature from the calculator and

the arg function from Insert-f(x)-Complex Numbers-arg. There will

be a number of other examples in the chapters to follow on the use of

Mathcad with complex numbers.

14.12 PHASORS
As noted earlier in this chapter, the addition of sinusoidal voltages

and currents will frequently be required in the analysis of ac circuits.

One lengthy but valid method of performing this operation is to place

both sinusoidal waveforms on the same set of axes and add alge-

braically the magnitudes of each at every point along the abscissa, as

shown for c 5 a 1 b in Fig. 14.62. This, however, can be a long and

tedious process with limited accuracy. A shorter method uses the

rotating radius vector first appearing in Fig. 13.16. This radius vector,

having a constant magnitude (length) with one end fixed at the ori-

gin, is called a phasor when applied to electric circuits. During its

rotational development of the sine wave, the phasor will, at the

instant t 5 0, have the positions shown in Fig. 14.63(a) for each

waveform in Fig. 14.63(b).

v1
a

b

0 t

v2

vT = v1 + v2
c = a + b

v

FIG. 14.62
Adding two sinusoidal waveforms on a point-by-point basis.

Note in Fig. 14.63(b) that v2 passes through the horizontal axis at

t 5 0 s, requiring that the radius vector in Fig. 14.63(a) be on the hori-

zontal axis to ensure a vertical projection of zero volts at t 5 0 s. Its

length in Fig. 14.63(a) is equal to the peak value of the sinusoid as

required by the radius vector of Fig. 13.16. The other sinusoid has

passed through 90° of its rotation by the time t 5 0 s is reached and
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therefore has its maximum vertical projection as shown in Fig. 14.63(a).

Since the vertical projection is a maximum, the peak value of the sinu-

soid that it will generate is also attained at t 5 0 s, as shown in Fig.

14.63(b). Note also that vT 5 v1 at t 5 0 s since v2 5 0 V at this instant.

It can be shown [see Fig. 14.63(a)] using the vector algebra

described in Section 14.10 that

1 V /0° 1 2 V /90° 5 2.236 V /63.43°

In other words, if we convert v1 and v2 to the phasor form using

v 5 Vm sin(qt 6 v) ⇒ Vm /6v

and add them using complex number algebra, we can find the phasor

form for vT with very little difficulty. It can then be converted to the

time domain and plotted on the same set of axes, as shown in Fig.

14.63(b). Figure 14.63(a), showing the magnitudes and relative posi-

tions of the various phasors, is called a phasor diagram. It is actually

a “snapshot” of the rotating radius vectors at t 5 0 s.

In the future, therefore, if the addition of two sinusoids is required,

they should first be converted to the phasor domain and the sum found

using complex algebra. The result can then be converted to the time

domain.

u

1 V

2 V

v
2.236 V

1 V

2.236 V2 V

(a) (b)

v1 = 2 sin (   t + 90°)v

vT = v1 + v2

     = 2.236 sin (   t + 63.43°)v

v2 = 1 sin    tv

   tv

  2 (0°)

(t = 0 s)

θ

  1 =

90°
θ

   T =

63.43°
θ  2 = 0°θ

  T = 63.43°θ  1 = 90°θ

FIG. 14.63
(a) The phasor representation of the sinusoidal waveforms of Fig. 14.63(b); 

(b) finding the sum of two sinusoidal waveforms of v1 and v2.
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The case of two sinusoidal functions having phase angles different

from 0° and 90° appears in Fig. 14.64. Note again that the vertical

height of the functions in Fig. 14.64(b) at t 5 0 s is determined by the

rotational positions of the radius vectors in Fig. 14.64(a).

Since the rms, rather than the peak, values are used almost exclu-

sively in the analysis of ac circuits, the phasor will now be redefined for

the purposes of practicality and uniformity as having a magnitude equal

to the rms value of the sine wave it represents. The angle associated

with the phasor will remain as previously described—the phase angle.

In general, for all of the analyses to follow, the phasor form of a

sinusoidal voltage or current will be

V 5 V /v and I 5 I /v

where V and I are rms values and v is the phase angle. It should be

pointed out that in phasor notation, the sine wave is always the refer-

ence, and the frequency is not represented.

Phasor algebra for sinusoidal quantities is applicable only for

waveforms having the same frequency.

EXAMPLE 14.29 Convert the following from the time to the phasor

domain:

6 A 5 A

ImT

0°
(t = 0 s)

i

5 A

6 A

10.63 A

(a) (b)

iT = i1 + i2 = 10.63 sin(qt + 46.40°)

i1 = 5 sin(qt + 30°)

qt

i2 = 6 sin(qt + 60°)

v1 = 30°

vT

v2 = 60°

v2 = 60°

v1 = 30°

vT = 46.40°

FIG. 14.64
Adding two sinusoidal currents with phase angles other than 90°.

Time Domain Phasor Domain

a. Ï2w(50) sin qt 50 /0°

b. 69.6 sin(qt 1 72°) (0.707)(69.6) /72° 5 49.21 /72°

c. 45 cos qt (0.707)(45) /90° 5 31.82 /90°



EXAMPLE 14.31 Find the input voltage of the circuit of Fig. 14.65 if

va 5 50 sin(377t 1 30°)

vb 5 30 sin(377t 1 60°)
f 5 60 Hz

Phasor Domain Time Domain

a. I 5 10 /30° i 5 Ï2w(10) sin(2p60t 1 30°)

and i 5 14.14 sin(377t 1 30°)

b. V 5 115 /270° v 5 Ï2w(115) sin(377t 2 70°)

and v 5 162.6 sin(377t 2 70°)





EXAMPLE 14.30 Write the sinusoidal expression for the following

phasors if the frequency is 60 Hz:

+

–

+

–

+ –

ein

va

vb

FIG. 14.65
Example 14.31.
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Solution: Applying Kirchhoff’s voltage law, we have

ein 5 va 1 vb

Converting from the time to the phasor domain yields

va 5 50 sin(377t 1 30°) ⇒ Va 5 35.35 V /30°

vb 5 30 sin(377t 1 60°) ⇒ Vb 5 21.21 V /60°

Converting from polar to rectangular form for addition yields

Va 5 35.35 V /30° 5 30.61 V 1 j 17.68 V

Vb 5 21.21 V /60° 5 10.61 V 1 j 18.37 V

Then

Ein 5 Va 1 Vb 5 (30.61 V 1 j 17.68 V) 1 (10.61 V 1 j 18.37 V)

5 41.22 V 1 j 36.05 V

Converting from rectangular to polar form, we have

Ein 5 41.22 V 1 j 36.05 V 5 54.76 V /41.17°

Converting from the phasor to the time domain, we obtain

Ein 5 54.76 V /41.17° ⇒ ein 5 Ï2w(54.76) sin(377t 1 41.17°)

and ein 5 77.43 sin(377t 1 41.17°)
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A plot of the three waveforms is shown in Fig. 14.66. Note that at

each instant of time, the sum of the two waveforms does in fact add up

to ein. At t 5 0 (qt 5 0), ein is the sum of the two positive values, while

at a value of qt, almost midway between p/2 and p, the sum of the pos-

itive value of va and the negative value of vb results in ein 5 0.

EXAMPLE 14.32 Determine the current i2 for the network of Fig.

14.67.

ein  = va  + vb

60°

41.17°

30°

30 50

77.43

va

vb

0

–
2
p

2
p p 3

2
p

2p   tq

FIG. 14.66
Solution to Example 14.31.

iT  =  120 3  10–3 sin (qt  +  60°)

i1  =  80 3  10–3 sin qt

i2  =  ?

FIG. 14.67
Example 14.32.

Solution: Applying Kirchhoff’s current law, we obtain

iT 5 i1 1 i2 or i2 5 iT 2 i1

Converting from the time to the phasor domain yields

iT 5 120 3 1023 sin(qt 1 60°) ⇒ 84.84 mA /60°

i1 5 80 3 1023 sin qt ⇒ 56.56 mA /0°
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Converting from polar to rectangular form for subtraction yields

IT 5 84.84 mA /60° 5 42.42 mA 1 j 73.47 mA

I1 5 56.56 mA /0° 5 56.56 mA 1 j 0

Then

I2 5 IT 2 I1

5 (42.42 mA 1 j 73.47 mA) 2 (56.56 mA 1 j 0)

and I2 5 214.14 mA 1 j 73.47 mA

Converting from rectangular to polar form, we have

I2 5 74.82 mA /100.89°

Converting from the phasor to the time domain, we have

I2 5 74.82 mA /100.89° ⇒
i2 5 Ï2w(74.82 3 1023) sin(qt 1 100.89°)

and i2 5 105.8 3 10
23

sin(qt 1 100.89°)

A plot of the three waveforms appears in Fig. 14.68. The waveforms

clearly indicate that iT 5 i1 1 i2.

i2

60°100.89°

0°

80
105.8

120
i1

iT

i (mA)

i2  = iT  – i1

p–
2
p

2
p 3

2
p

2p

FIG. 14.68
Solution to Example 14.32.

14.13 COMPUTER ANALYSIS
PSpice
Capacitors and the ac Response The simplest of ac capacitive

circuits will now be analyzed to introduce the process of setting up an

ac source and running an ac transient simulation. The ac source of Fig.
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14.69 is obtained through Place part key-SOURCE-VSIN-OK. The

name or value of any parameter can be changed by simply double-

clicking on the parameter on the display or by double-clicking on the

source symbol to get the Property Editor dialog box. Within the dia-

log box the values appearing in Fig. 14.69 were set, and under Display,

Name and Value were selected. After you have selected Apply and

exited the dialog box, the parameters will appear as shown in the figure. 

The simulation process is initiated by selecting the New Simulation

Profile and under New Simulation entering Transientac for the Name

followed by Create. In the Simulation Settings dialog box, Analysis is

selected and Time Domain(Transient) is chosen under Analysis type.

The Run to time will be set at 3 ms to permit a display of three cycles of

the sinusoidal waveforms (T 5 1/f 5 1/1000 Hz 5 1 ms). The Start

saving data after will be left at 0 s, and the Maximum step size will be

3 ms/1000 5 3 ms. Clicking OK and then selecting the Run PSpice icon

will result in a plot having a horizontal axis that extends from 0 to 3 ms.

Now we have to tell the computer which waveforms we are inter-

ested in. First, we should take a look at the applied ac source by select-

ing Trace-Add Trace-V(Vs:1) followed by OK. The result is the

sweeping ac voltage in the botttom region of the screen of Fig. 14.70.

Note that it has a peak value of 5 V, and three cycles appear in the 3-ms

time frame. The current for the capacitor can be added by selecting

Trace-Add Trace and choosing I(C) followed by OK. The resulting

waveform for I(C) appears at a 90° phase shift from the applied volt-

age, with the current leading the voltage (the current has already peaked

FIG. 14.69
Using PSpice to analyze the response of a capacitor to a sinusoidal ac signal.



as the voltage crosses the 0-V axis). Since the peak value of each plot

is in the same magnitude range, the 5 appearing on the vertical scale

can be used for both. A theoretical analysis would result in XC 5 2.34 V,

and the peak value of IC 5 E/XC 5 5 V/2.34 V 5 2.136 A, as shown in

Fig. 14.70. 

For interest sake, and a little bit of practice, let us obtain the curve

for the power delivered to the capacitor over the same time period. First

select Plot-Add Plot to Window-Trace-Add Trace to obtain the Add

Traces dialog box. Then chose V(Vs:1), follow it with a * for multi-

plication, and finish by selecting I(C). The result is the expression

V(Vs:1)*I(C) of the power format: p 5 vi. Click OK, and the power

plot at the top of Fig 14.70 will appear. Note that over the full three

cycles, the area above the axis equals the area below—there is no net

transfer of power over the 3-ms period. Note also that the power curve

is sinusoidal (which is quite interesting) with a frequency twice that of

the applied signal. Using the cursor control, we can determine that the

maximum power (peak value of the sinusoidal waveform) is 5.34 W.

The cursors, in fact, have been added to the lower curves to show the

peak value of the applied sinusoid and the resulting current.

After selecting the Toggle cursor icon, left-click the mouse to sur-

round the V(Vs:1) at the bottom of the plot with a dashed line to show

that the cursor is providing the levels of that quantity. When placed at 1⁄4

of the total period of 250 ms (A1), the peak value is exactly 5 V as
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FIG. 14.70
A plot of the voltage, current, and power for the capacitor of Fig. 14.69.
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FIG. 14.71
Using Electronics Workbench to review the response of an inductive element 

to a sinusoidal ac signal.

shown in the Probe Cursor dialog box. Placing the cursor over the

symbol next to I(C) at the bottom of the plot and right-clicking the

mouse will assign the right cursor to the current. Placing it at exactly

1 ms (A2) will result in a peak value of 2.136 A to match the solution

above. To further distinguish between the voltage and current wave-

forms, the color and the width of the lines of the traces were changed.

Place the cursor right on the plot line and perform a right click. Then

the Properties option appears. When Properties is selected, a Trace

Properties dialog box will appear in which the yellow color can be

selected and the width widened to improve the visibility on the black

background. Note that yellow was chosen for Vs and green for I(C).

Note also that the axis and the grid have been changed to a more visi-

ble color using the same procedure.

Electronics Workbench
Since PSpice reviewed the response of a capacitive element to an ac

voltage, Electronics Workbench will repeat the analysis for an inductive

element. The ac voltage source was derived from the Sources parts bin

as described in Chapter 13 with the values appearing in Fig. 14.71 set in

the AC Voltage dialog box. Since the transient response of Electronics

Workbench is limited to a plot of voltage versus time, a plot of the cur-

rent of the circuit will require the addition of a resistor of 1 V in series
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with the inductive element. The magnitude of the current through the

resistor and, of course, the series inductor will then be determined by

| iR | 5 | | 5 | | 5 | vR | 5 | iL |

revealing that the current will have the same peak value as the voltage

across the resistor due to the division by 1. When viewed on the graph,

it can simply be considered a plot of the current. In actuality, all

inductors require a series resistance, so the 1-V resistor serves an

important dual purpose. The 1-V resistance is also so small compared

to the reactance of the coil at the 1-kHz frequency that its effect on the

total impedance or voltage across the coil can be ignored.

Once the circuit has been constructed, the sequence Simulate-

Analyses-Transient Analysis will result in a Transient Analysis dia-

log box in which the Start time is set at 0 s and the End time at 105 ms.

The 105 ms was set as the End time to give the network 100 ms to set-

tle down in its steady-state mode and 5 ms for five cycles in the output

display. The Minimum number of time points was set at 10,000 to

ensure a good display for the rapidly changing waveforms.

Next the Output variables heading was chosen within the dialog

box, and nodes 1 and 2 were moved from the Variables in Circuit to

Selected variables for analysis using the Plot during simulation key

pad. Choosing Simulate will then result in a waveform that extends

from 0 s to 105 ms. Even though we plan to save only the response that

occurs after 100 ms, the computer is unaware of our interest, and it

plots the response for the entire period, This is corrected by selecting

the Properties key pad in the toolbar at the top of the graph (it looks

like a tag and pencil) to obtain the Graph Properties dialog box.

Selecting Bottom Axis will permit setting the Range from a Minimum

of 0.100s5100ms to a Maximum of 0.105s5105ms. Click OK, and

the time period of Fig. 14.71 will be displayed. The grid structure is

added by selecting the Show/Hide Grid key pad, and the color associ-

ated with each nodal voltage will be displayed if we choose the

Show/Hide Legend key next to it.

The scale for the plot of iL can be improved by first going to Traces

and setting the Trace to the number 2 representing the voltage across

the 1-V resistor. When 2 is selected, the Color displayed will automat-

icaly change to blue. In the Y Range, select Right Axis followed by

OK. Then select the Right Axis heading, and enter Current(A) for the

Label, enable Axis, change the Pen Size to 1, and change the Range

from 2500 mA to 1500 mA. Finally, set the Total Ticks at 8 with

Minor Ticks at 2 to match the Left Axis, and leave the box with an

OK. The plot of Fig. 14.71 will result. Take immediate note of the new

axis on the right and the Current(A) label. We can now see that the

current has a peak of about 160 mA. For more detail on the peak val-

ues, simply click on the Show/Hide Cursors key pad on the top tool-

bar. A Transient Analysis dialog box will appear with a 1 and a red

line to indicate that it is working on the full source voltage at node 1.

To switch to the current curve (the blue curve), simply bring the cursor

to any point on the blue curve and perform a left click. A blue line and

the number 2 will appear at the heading of the Transient Analysis dia-

log box. Clicking on the 1 in the small inverted arrow at the top will

allow you to drag the vertical red line to any horizontal point on the

graph. As shown in Fig. 14.71, when the cursor is set on 101.5 ms (x1),

vR
}
1V

vR
}
R

u
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the peak value of the current curve is 159.05 mA (y1). A second cursor

appears in blue with a number 2 in the inverted arrowhead that can also

be moved with a left click on the number 2 at the top of the line. If set

at 101.75 ms (x2), it has a minimum value of 25.18 mA (y2), the

smallest value available for the calculated data points. Note that the dif-

ference between horizontal time values dx 5 252 ms 5 0.25 ms which

is 1⁄4 of the period of the wave (at 1 ms).

C11

The versatility of the C11 programming language is clearly demon-

strated by the following program designed to perform conversions

between the polar and rectangular forms. Comments are provided on

the right side of the program to help identify the function of specific

lines or sections of the program. Recall that any comments to the right

of the parallel slash bars // are ignored by the compiler. In this case the

file math.h must be added to the preprocessor directive list, as shown in

Fig. 14.72, to provide the mathematical functions to be employed in the

program. A complete list of operations can be found in the compiler ref-

erence manual. The #define directive defines the level of PI to be

employed when called for in the program and specifies the operations

to be performed when SQR(N) and SGN(N) appear. The ? associated

with the SGN(N) directive is a conditional operator that specifies 11 if

N is greater than or equal to 0 and 21 if not.

Next the variables are introduced and defined as floating points. The

next entry includes the term void to indicate that the variable to
2
polar

will not return a specific numerical value when part of an execution but

rather may identify a subroutine or string of words or characters. The

void within the parentheses reveals that the variable does not have a list

of parameters associated with it for possible use in an application.

As described in earlier programs the main ( ) defines the point at

which execution will begin, with the body of main defined by the open-

ing and closing braces { }. Within main, an integer variable choice is

introduced to handle the integer number (1 or 2) which the user will

choose in response to the question posed under cout. Through cin the

user will respond with a 1 or 2, which will define the variable choice.

The switch is a conditional response that will follow a path defined by

the variable choice. The possible paths for the program to follow under

switch are enclosed in the braces { }. Since a numerical value will

determine the path, the options must begin with the word case. In this

case, a 1 will follow the to_polar structured variable, and a 2 will fol-

low the to_rectangular structured variable. The break simply marks the

end of the selection process.

On a to_polar choice the program will move to the subroutine void

to_polar and will convert the number to the polar form. The first six lines

simply create line shifts and ask for the values of X and Y. The next line

calculates the magnitude of the polar form (Z) using SQR(N ), defined

above, and the sqrt from the math.h header file. An if statement sensitive

to the value of X and Y will then delineate which line will determine the

phase angle of the polar form. The SGN(N ), as introduced in the pre-

processor listing, will determine the sign to be employed in the equation.

The a preceding the tan function indicates arc tan or tan21, while PI is as

defined above in the preprocessor section. Note also that the angles must
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FIG. 14.72
C11 program for complex number conversions.
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FIG. 14.73
Polar-to-rectangular conversion using the C11 program of Fig. 14.72.

FIG. 14.74
Rectangular-to-polar conversion using the C11 program of Fig. 14.72.

first be converted to radians by multiplying by the ratio 180°/p. Once

determined, the polar form is printed out using the cout statements.

Choosing the to_rectangular structured variable will cause the pro-

gram to bypass the above subroutine and move directly to the polar-

to-rectangular-conversion sequence. Again, the first six lines simply ask

for the components of the polar form. The real and imaginary parts are

then calculated and the results printed out. Note the if-else statement

required to associate the properly signed j with the imaginary part.

In an effort to clearly identify the major components of the program,

brackets have been added at the edge of the program with a short

description of the function performed. As mentioned earlier, do not be

concerned if a number of questions arise about the program structure or

specific commands or statements. The purpose here is simply to intro-

duce the basic format of the C11 programming language and not to

provide all the details required to write your own programs.

Two runs of the program have been provided in Figs. 14.73 and

14.74, one for a polar-to-rectangular conversion and the other for a rec-

tangular-to-polar conversion. Note in each case the result of the cout

and cin statements and in general the clean, clear, and direct format of

the resulting output.
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PROBLEMS
SECTION 14.2 The Derivative

1. Plot the following waveform versus time showing one

clear, complete cycle. Then determine the derivative of

the waveform using Eq. (14.1), and sketch one complete

cycle of the derivative directly under the original wave-

form. Compare the magnitude of the derivative at vari-

ous points versus the slope of the original sinusoidal

function.

v 5 1 sin 3.14t

2. Repeat Problem 1 for the following sinusoidal function,

and compare results. In particular, determine the fre-

quency of the waveforms of Problems 1 and 2, and com-

pare the magnitude of the derivative.

v 5 1 sin 15.71t

3. What is the derivative of each of the following sinusoidal

expressions?

a. 10 sin 377t b. 0.6 sin(754t 1 20°)

c. Ï2w 20 sin(157t 2 20°) d. 2200 sin(t 1 180°)

SECTION 14.3 Response of Basic R, L, and C
Elements to a Sinusoidal Voltage or Current

4. The voltage across a 5-V resistor is as indicated. Find the

sinusoidal expression for the current. In addition, sketch

the v and i sinusoidal waveforms on the same axis.

a. 150 sin 377t b. 30 sin(377t 1 20°)

c. 40 cos(qt 1 10°) d. 280 sin(qt 1 40°)

5. The current through a 7-kV resistor is as indicated. Find

the sinusoidal expression for the voltage. In addition,

sketch the v and i sinusoidal waveforms on the same axis.

a. 0.03 sin 754t

b. 2 3 1023 sin(400t 2 120°)

c. 6 3 1026 cos(qt 2 2°)

d. 20.004 cos(qt 2 90°)

6. Determine the inductive reactance (in ohms) of a 2-H coil

for

a. dc

and for the following frequencies:

b. 25 Hz c. 60 Hz

d. 2000 Hz e. 100,000 Hz

7. Determine the inductance of a coil that has a reactance of

a. 20 V at f 5 2 Hz.

b. 1000 V at f 5 60 Hz.

c. 5280 V at f 5 1000 Hz.

8. Determine the frequency at which a 10-H inductance has

the following inductive reactances:

a. 50 V b. 3770 V

c. 15.7 kV d. 243 V

9. The current through a 20-V inductive reactance is given.

What is the sinusoidal expression for the voltage?

Sketch the v and i sinusoidal waveforms on the same

axis.

a. i 5 5 sin qt b. i 5 0.4 sin(qt 1 60°)

c. i 5 26 sin(qt 2 30°) d. i 5 3 cos(qt 1 10°)

10. The current through a 0.1-H coil is given. What is the

sinusoidal expression for the voltage?

a. 30 sin 30t

b. 0.006 sin 377t

c. 5 3 1026 sin(400t 1 20°)

d. 24 cos(20t 2 70°)

11. The voltage across a 50-V inductive reactance is given.

What is the sinusoidal expression for the current? Sketch

the v and i sinusoidal waveforms on the same set of axes.

a. 50 sin qt b. 30 sin(qt 1 20°)

c. 40 cos(qt 1 10°) d. 280 sin(377t 1 40°)

12. The voltage across a 0.2-H coil is given. What is the sinu-

soidal expression for the current?

a. 1.5 sin 60t

b. 0.016 sin(t 1 4°)

c. 24.8 sin(0.05t 1 50°)

d. 9 3 1023 cos(377t 1 360°)

13. Determine the capacitive reactance (in ohms) of a 5-mF

capacitor for

a. dc

and for the following frequencies:

b. 60 Hz c. 120 Hz

d. 1800 Hz e. 24,000 Hz

14. Determine the capacitance in microfarads if a capacitor

has a reactance of

a. 250 V at f 5 60 Hz.

b. 55 V at f 5 312 Hz.

c. 10 V at f 5 25 Hz.

15. Determine the frequency at which a 50-mF capacitor has

the following capacitive reactances:

a. 342 V b. 684 V

c. 171 V d. 2000 V

16. The voltage across a 2.5-V capacitive reactance is given.

What is the sinusoidal expression for the current? Sketch

the v and i sinusoidal waveforms on the same set of axes.

a. 100 sin qt b. 0.4 sin(qt 1 20°)

c. 8 cos(qt 1 10°) d. 270 sin(qt 1 40°)

17. The voltage across a 1-mF capacitor is given. What is the

sinusoidal expression for the current?

a. 30 sin 200t b. 90 sin 377t

c. 2120 sin(374t 1 30°) d. 70 cos(800t 2 20°)

18. The current through a 10-V capacitive reactance is given.

Write the sinusoidal expression for the voltage. Sketch

the v and i sinusoidal waveforms on the same set of axes.

a. i 5 50 sin qt b. i 5 40 sin(qt 1 60°)

c. i 5 26 sin(qt 2 30°) d. i 5 3 cos(qt 1 10°)

19. The current through a 0.5-mF capacitor is given. What is

the sinusoidal expression for the voltage?

a. 0.20 sin 300t b. 0.007 sin 377t

c. 0.048 cos 754t d. 0.08 sin(1600t 2 80°)
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35. In Fig. 14.76, e 5 100 sin(157t 1 30°).

a. Find the sinusoidal expression for i.

b. Find the value of the inductance L.

c. Find the average power loss by the inductor.

e

+

–

R = 3 Ω

i

FIG. 14.75
Problem 34.

XL = 50 Ωe

+

–

i

FIG. 14.76
Problem 35.

e

i

+

–

XC  =  400 V

FIG. 14.77
Problem 36.

36. In Fig. 14.77, i 5 3 sin(377t 2 20°).

a. Find the sinusoidal expression for e.

b. Find the value of the capacitance C in microfarads.

c. Find the average power loss in the capacitor.

32. A circuit dissipates 100 W (average power) at 150 V

(effective input voltage) and 2 A (effective input current).

What is the power factor? Repeat if the power is 0 W;

300 W.

*33. The power factor of a circuit is 0.5 lagging. The power

delivered in watts is 500. If the input voltage is

50 sin(qt 1 10°), find the sinusoidal expression for the

input current.

34. In Fig. 14.75, e 5 30 sin(377t 1 20°).

a. What is the sinusoidal expression for the current?

b. Find the power loss in the circuit.

c. How long (in seconds) does it take the current to com-

plete six cycles?

*20. For the following pairs of voltages and currents, indicate

whether the element involved is a capacitor, an inductor,

or a resistor, and the value of C, L, or R if sufficient data

are given:

a. v 5 550 sin(377t 1 40°)

i 5 11 sin(377t 2 50°)

b. v 5 36 sin(754t 1 80°)

i 5 4 sin(754t 1 170°)

c. v 5 10.5 sin(qt 1 13°)

i 5 1.5 sin(qt 1 13°)

*21. Repeat Problem 20 for the following pairs of voltages

and currents:

a. v 5 2000 sin qt

i 5 5 cos qt

b. v 5 80 sin(157t 1 150°)

i 5 2 sin(157t 1 60°)

c. v 5 35 sin(qt 2 20°)

i 5 7 cos(qt 2 110°)

SECTION 14.4 Frequency Response of the
Basic Elements
22. Plot XL versus frequency for a 5-mH coil using a fre-

quency range of zero to 100 kHz on a linear scale.

23. Plot XC versus frequency for a 1-mF capacitor using a fre-

quency range of zero to 10 kHz on a linear scale.

24. At what frequency will the reactance of a 1-mF capacitor

equal the resistance of a 2-kV resistor?

25. The reactance of a coil equals the resistance of a 10-kV

resistor at a frequency of 5 kHz. Determine the induc-

tance of the coil.

26. Determine the frequency at which a 1-mF capacitor and a

10-mH inductor will have the same reactance.

27. Determine the capacitance required to establish a capaci-

tive reactance that will match that of a 2-mH coil at a fre-

quency of 50 kHz.

SECTION 14.5 Average Power and Power
Factor
28. Find the average power loss in watts for each set in Prob-

lem 20.

29. Find the average power loss in watts for each set in Prob-

lem 21.

*30. Find the average power loss and power factor for each of

the circuits whose input current and voltage are as fol-

lows:

a. v 5 60 sin(qt 1 30°)

i 5 15 sin(qt 1 60°)

b. v 5 250 sin(qt 2 20°)

i 5 22 sin(qt 1 40°)

c. v 5 50 sin(qt 1 80°)

i 5 3 cos(qt 1 20°)

d. v 5 75 sin(qt 2 5°)

i 5 0.08 sin(qt 2 35°)

31. If the current through and voltage across an element are 

i 5 8 sin(qt 1 40°) and v 5 48 sin(qt 1 40°), respec-

tively, compute the power by I2R, (Vm Im/2) cos v, and

VI cos v, and compare answers.
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e

is

+

–

e  = √
—
2 100 sin (104t  +  60°)

C2 8 mFC1 2 mF

i1 i2

FIG. 14.78
Problem 37.

*37. For the network of Fig. 14.78 and the applied signal:

a. Determine i1 and i2.

b. Find is.

vs

+

–

is  = √
—
2 6 sin (103t  +  30°)

L2 12 mHL1 4 mH

i1 i2

is

FIG. 14.79
Problem 38.

*38. For the network of Fig. 14.79 and the applied source:

a. Determine the source voltage vs.

b. Find the currents i1 and i2.

SECTION 14.9 Conversion between Forms
39. Convert the following from rectangular to polar form:

a. 4 1 j 3 b. 2 1 j 2

c. 3.5 1 j16 d. 100 1 j 800

e. 1000 1 j 400 f. 0.001 1 j 0.0065

g. 7.6 2 j 9 h. 28 1 j 4

i. 215 2 j 60 j. 178 2 j 65

k. 22400 1 j 3600

l. 5 3 1023
2 j 25 3 1023

40. Convert the following from polar to rectangular form:

a. 6 /30° b. 40 /80°

c. 7400 /70° d. 4 3 1024
/8°

e. 0.04 /80° f. 0.0093 /23°

g. 65 /150° h. 1.2 /135°

i. 500 /200° j. 6320 /235°

k. 7.52 /2125° l. 0.008 /310°

41. Convert the following from rectangular to polar form:

a. 1 1 j 15 b. 60 1 j 5

c. 0.01 1 j 0.3 d. 100 2 j 2000

e. 25.6 1 j 86 f. 22.7 2 j 38.6

42. Convert the following from polar to rectangular form:

a. 13 /5° b. 160 /87°

c. 7 3 1026
/2° d. 8.7 /177°

e. 76 /24° f. 396 /1265°

SECTION 14.10 Mathematical Operations with
Complex Numbers
Perform the following operations.

43. Addition and subtraction (express your answers in rec-

tangular form):

a. (4.2 1 j 6.8) 1 (7.6 1 j 0.2)

b. (142 1 j 7) 1 (9.8 1 j 42) 1 (0.1 1 j 0.9)

c. (4 3 1026
1 j 76) 1 (7.2 3 1027

2 j 5)

d. (9.8 1 j 6.2) 2 (4.6 1 j 4.6)

e. (167 1 j 243) 2 (242.3 2 j 68)

f. (236.0 1 j 78) 2 (24 2 j 6) 1 (10.8 2 j 72)

g. 6 /20° 1 8 /80°

h. 42 /45° 1 62 /60° 2 70 /120°

44. Multiplication [express your answers in rectangular form

for parts (a) through (d), and in polar form for parts (e)

through (h)]:

a. (2 1 j 3)(6 1 j 8)

b. (7.8 1 j 1)(4 1 j 2)(7 1 j 6)

c. (0.002 1 j 0.006)(22 1 j 2)

d. (400 2 j 200)(20.01 2 j 0.5)(21 1 j 3)

e. (2 /60°)(4 /22°)

f. (6.9 /8°)(7.2 /272°)

g. 0.002 /120°)(0.5 /200°)(40 /260°)

h. (540 /220°)(25 /180°)(6.2 /0°)

45. Division (express your answers in polar form):

a. (42 /10°)/(7 /60°)

b. (0.006 /120°)/(30 /220°)

c. (4360 /220°)/(40 /210°)

d. (650 /280°)/(8.5 /360°)

e. (8 1 j 8)/(2 1 j 2)

f. (8 1 j 42)/(26 1 j 60)

g. (0.05 1 j 0.25)/(8 2 j 60)

h. (24.5 2 j 6)/(0.1 2 j 0.4)

*46. Perform the following operations (express your answers

in rectangular form):

a.

b.

c.

d.

e. 1 21 2
3

1 21
}}
62

2 j Ï9w0w0w
2
}
j

1
}}
(0.02 /10°)2

(0.4 /60°)2(300 /40°)
}}}

3 1 j 9

(6 /20°)(120 /240°)(3 1 j 4)
}}}}

2 /230°

8 /60°
}}}
(2 /0°) 1 (100 1 j 100)

(4 1 j 3) 1 (6 2 j 8)
}}}
(3 1 j 3) 2 (2 1 j 3)
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is
i1 i2

FIG. 14.81
Problem 51.
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FIG. 14.82
Problem 52.

+

–

+
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+ –

ein

va

vb

FIG. 14.80
Problem 50.

*47. a. Determine a solution for x and y if

(x 1 j 4) 1 (3x 1 j y) 2 j 7 5 16 /0°

b. Determine x if

(10 /20°)(x /260°) 5 30.64 2 j 25.72

c. Determine a solution for x and y if

(5x 1 j 10)(2 2 j y) 5 90 2 j 70

d. Determine v if

5 3.464 2 j 2

SECTION 14.12 Phasors
48. Express the following in phasor form:

a. Ï2w(100) sin(qt 1 30°)

b. Ï2w(0.25) sin(157t 2 40°)

c. 100 sin(qt 2 90°)

d. 42 sin(377t 1 0°)

e. 6 3 1026 cos qt

f. 3.6 3 1026 cos(754t 2 20°)

49. Express the following phasor currents and voltages as

sine waves if the frequency is 60 Hz:

a. I 5 40 A /20° b. V 5 120 V /0°

c. I 5 8 3 1023 A /120° d. V 5 5 V /90°

e. I 5 1200 A /2120° f. V 5 V /2180°

50. For the system of Fig. 14.80, find the sinusoidal expres-

sion for the unknown voltage va if

ein 5 60 sin(377t 1 20°)

vb 5 20 sin 377t

51. For the system of Fig. 14.81, find the sinusoidal expres-

sion for the unknown current i1 if

is 5 20 3 1026 sin(qt 1 90°)

i2 5 6 3 1026 sin(qt 2 60°)

52. Find the sinusoidal expression for the applied voltage e

for the system of Fig. 14.82 if

va 5 60 sin(qt 1 30°)

vb 5 30 sin(qt 2 30°)

vc 5 40 sin(qt 1 120°)

6000
}
Ï2w

80 /0°
}
20 /v
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53. Find the sinusoidal expression for the current is for the

system of Fig. 14.83 if

i1 5 6 3 1023 sin(377t 1 180°)

i2 5 8 3 1023 sin 377t

i3 5 2i2

SECTION 14.13 Computer Analysis
PSpice or Electronics Workbench
54. Plot iC and vC versus time for the network of Fig. 14.69

for two cycles if the frequency is 0.2 kHz.

55. Plot the magnitude and phase angle of the current iC ver-

sus frequency (100 Hz to 100 kHz) for the network of

Fig. 14.69.

56. Plot the total impedance of the configuration of Fig.

14.26 versus frequency (100 kHz to 100 MHz) for the

following parameter values: C 5 0.1 mF, Ls 5 0.2 mH,

Rs 5 2 MV, and Rp 5 100 MV. For what frequency

range is the capacitor “capacitive”?

Programming Language (C11, QBASIC, Pascal, etc.)
57. Given a sinusoidal function, write a program to print out

the derivative.

58. Given the sinusoidal expression for the current, deter-

mine the expression for the voltage across a resistor, a

capacitor, or an inductor, depending on the element

involved. In other words, the program will ask which ele-

ment is to be investigated and will then request the perti-

nent data to obtain the mathematical expression for the

sinusoidal voltage.

59. Write a program to tabulate the reactance versus fre-

quency for an inductor or a capacitor for a specified fre-

quency range.

60. Given the sinusoidal expression for the voltage and cur-

rent of a load, write a program to determine the average

power and power factor.

61. Given two sinusoidal functions, write a program to con-

vert each to the phasor domain, add the two, and print out

the sum in the phasor and time domains.

GLOSSARY
Average or real power The power delivered to and dissi-

pated by the load over a full cycle.

Complex conjugate A complex number defined by simply

changing the sign of an imaginary component of a complex

number in the rectangular form.

Complex number A number that represents a point in a

two-dimensional plane located with reference to two dis-

tinct axes. It defines a vector drawn from the origin to that

point.

Derivative The instantaneous rate of change of a function

with respect to time or another variable.

Leading and lagging power factors An indication of

whether a network is primarily capacitive or inductive in

nature. Leading power factors are associated with capaci-

tive networks, and lagging power factors with inductive net-

works.

Phasor A radius vector that has a constant magnitude at a

fixed angle from the positive real axis and that represents a

sinusoidal voltage or current in the vector domain.

is
i1 i3

i2

FIG. 14.83
Problem 53.

Phasor diagram A “snapshot” of the phasors that represent

a number of sinusoidal waveforms at t 5 0.

Polar form A method of defining a point in a complex plane

that includes a single magnitude to represent the distance

from the origin, and an angle to reflect the counterclock-

wise distance from the positive real axis.

Power factor (Fp) An indication of how reactive or resistive

an electrical system is. The higher the power factor, the

greater the resistive component.

Reactance The opposition of an inductor or a capacitor to

the flow of charge that results in the continual exchange of

energy between the circuit and magnetic field of an induc-

tor or the electric field of a capacitor.

Reciprocal A format defined by 1 divided by the complex

number.

Rectangular form A method of defining a point in a com-

plex plane that includes the magnitude of the real compo-

nent and the magnitude of the imaginary component, the

latter component being defined by an associated letter j.
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15.1 INTRODUCTION
In this chapter, phasor algebra will be used to develop a quick, direct

method for solving both the series and the parallel ac circuits. The close

relationship that exists between this method for solving for unknown

quantities and the approach used for dc circuits will become apparent

after a few simple examples are considered. Once this association is

established, many of the rules (current divider rule, voltage divider rule,

and so on) for dc circuits can be readily applied to ac circuits.

SERIES ac CIRCUITS

15.2 IMPEDANCE AND THE PHASOR DIAGRAM
Resistive Elements
In Chapter 14, we found, for the purely resistive circuit of Fig. 15.1,

that v and i were in phase, and the magnitude

Im 5 }
V

R

m
} or Vm 5 ImR

a c

R v  = Vm sin qt

+

–

i  = Im sin qt

FIG. 15.1
Resistive ac circuit.

Series and Parallel ac Circuits



a c

In phasor form,

v 5 Vm sin qt ⇒ V 5 V /0°

where V 5 0.707Vm.

Applying Ohm’s law and using phasor algebra, we have

I 5 5 /0° 2 vR

Since i and v are in phase, the angle associated with i also must be 0°.

To satisfy this condition, vR must equal 0°. Substituting vR 5 0°, we

find

I 5 5 /0° 2 0° 5 /0°

so that in the time domain,

i 5 Ï2w1 2 sin qt

The fact that vR 5 0° will now be employed in the following polar

format to ensure the proper phase relationship between the voltage and

current of a resistor:

(15.1)

The boldface roman quantity ZR, having both magnitude and an

associated angle, is referred to as the impedance of a resistive element.

It is measured in ohms and is a measure of how much the element will

“impede” the flow of charge through the network. The above format

will prove to be a useful “tool” when the networks become more com-

plex and phase relationships become less obvious. It is important to

realize, however, that ZR is not a phasor, even though the format R/0°

is very similar to the phasor notation for sinusoidal currents and volt-

ages. The term phasor is reserved for quantities that vary with time, and

R and its associated angle of 0° are fixed, nonvarying quantities.

EXAMPLE 15.1 Using complex algebra, find the current i for the cir-

cuit of Fig. 15.2. Sketch the waveforms of v and i.

Solution: Note Fig. 15.3:

ZR 5 R /0°

V
}
R

V
}
R

V
}
R

V /0°
}
R /0°

V
}
R

V /0°
}
R /vR
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5 V v  =  100 sin qt

+

–

i

FIG. 15.2
Example 15.1.

100 V

0

20 A

2
p

p 2
3p

2p

vt

v

i

v

FIG. 15.3
Waveforms for Example 15.1.
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j

I

V

(b)

5.565 V

2.828 A

30°
+

j

14.14 A
70.7 V

I V

(a)
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v 5 100 sin qt ⇒ phasor form V 5 70.71 V /0°

I 5 5 5 5 14.14 A /0°

and i 5 Ï2w(14.14) sin qt 5 20 sin qt

EXAMPLE 15.2 Using complex algebra, find the voltage v for the cir-

cuit of Fig. 15.4. Sketch the waveforms of v and i.

Solution: Note Fig. 15.5:

i 5 4 sin(qt 1 30°) ⇒ phasor form I 5 2.828 A /30°

V 5 IZR 5 (I /v)(R /0°) 5 (2.828 A /30°)(2 V /0°)

5 5.656 V /30°

and v 5 Ï2w(5.656) sin(qt 1 30°) 5 8.0 sin(qt 1 30°)

70.71 V /0°
}}

5 V /0°

V /v
}
R /0°

V
}
ZR

a c

v
+

–
2 V

i  =  4 sin(qt + 30°)

FIG. 15.4
Example 15.2.

8 V

0

4 A

p vt

v
i

30°
v2p

2
3p

2
p

It is often helpful in the analysis of networks to have a phasor dia-

gram, which shows at a glance the magnitudes and phase relations

among the various quantities within the network. For example, the pha-

sor diagrams of the circuits considered in the two preceding examples

would be as shown in Fig. 15.6. In both cases, it is immediately obvi-

ous that v and i are in phase since they both have the same phase angle.

FIG. 15.5
Waveforms for Example 15.2.

FIG. 15.6
Phasor diagrams for Examples 15.1 and 15.2.
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Inductive Reactance
It was learned in Chapter 13 that for the pure inductor of Fig. 15.7, the

voltage leads the current by 90° and that the reactance of the coil XL is

determined by qL.

v 5 Vm sin qt ⇒ phasor form V 5 V /0°

By Ohm’s law,

I 5 5 /0° 2 vL

Since v leads i by 90°, i must have an angle of 290° associated with it.

To satisfy this condition, vL must equal 190°. Substituting vL 5 90°, we

obtain

I 5 5 /0° 2 90° 5 /290°

so that in the time domain,

i 5 Ï2w1 2 sin(qt 2 90°)

The fact that vL 5 90° will now be employed in the following polar

format for inductive reactance to ensure the proper phase relationship

between the voltage and current of an inductor.

ZL 5 XL /90° (15.2)

The boldface roman quantity ZL, having both magnitude and an

associated angle, is referred to as the impedance of an inductive ele-

ment. It is measured in ohms and is a measure of how much the induc-

tive element will “control or impede” the level of current through the

network (always keep in mind that inductive elements are storage

devices and do not dissipate like resistors). The above format, like that

defined for the resistive element, will prove to be a useful “tool” in the

analysis of ac networks. Again, be aware that ZL is not a phasor quan-

tity, for the same reasons indicated for a resistive element.

EXAMPLE 15.3 Using complex algebra, find the current i for the cir-

cuit of Fig. 15.8. Sketch the v and i curves.

Solution: Note Fig. 15.9:

V
}
XL

V
}
XL

V
}
XL

V /0°
}
XL /90°

V
}
XL

V /0°
}
XL /vL

a c

v  =  24 sin qt

+

–

i

XL  =  3 V

FIG. 15.8
Example 15.3.

24 V

0

8 A

2
p p

2
3p 2p

v

i

90°
2
5p   tv

FIG. 15.9
Waveforms for Example 15.3.

XL  = qL v  = Vm sin qt

+

–

i

FIG. 15.7
Inductive ac circuit.
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j

I

V
5.656 A

16.968 A

Leading

+

j

I

V

3.535 A
14.140 V

30°

Leading
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v 5 24 sin qt ⇒ phasor form V 5 16.968 V /0°

I 5 5 }
XL

V

/

/

9

v

0°
} 5 5 5.656 A /290°

and i 5 Ï2w(5.656) sin(qt 2 90°) 5 8.0 sin(qt 2 90°)

EXAMPLE 15.4 Using complex algebra, find the voltage v for the cir-

cuit of Fig. 15.10. Sketch the v and i curves.

Solution: Note Fig. 15.11:

i 5 5 sin(qt 1 30°) ⇒ phasor form I 5 3.535 A /30°

V 5 IZL 5 (I /v)(XL /90°) 5 (3.535 A /30°)(4 V /190°)

5 14.140 V /120°

and v 5Ï2w(14.140) sin(qt 1 120°) 5 20 sin(qt 1 120°)

16.968 V /0°
}}

3 V /90°

V
}
ZL

a c

v
+

–

i  =  5 sin(qt +  30°)

XL  =  4 V

FIG. 15.10
Example 15.4.

20 V

0

5 A

2
p

p

3p 2p

i

90°
2
p–

30°

  tv
2

υ

FIG. 15.11
Waveforms for Example 15.4.

The phasor diagrams for the two circuits of the two preceding exam-

ples are shown in Fig. 15.12. Both indicate quite clearly that the volt-

age leads the current by 90°.

FIG. 15.12
Phasor diagrams for Examples 15.3 and 15.4.
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Capacitive Reactance
It was learned in Chapter 13 that for the pure capacitor of Fig. 15.13,

the current leads the voltage by 90° and that the reactance of the capac-

itor XC is determined by 1/qC.

v 5 Vm sin qt ⇒ phasor form V 5 V /0°

Applying Ohm’s law and using phasor algebra, we find

I 5 5 /0° 2 vC

Since i leads v by 90°, i must have an angle of 190° associated with it.

To satisfy this condition, vC must equal 290°. Substituting vC 5 290°

yields

I 5 5 /0° 2 (290°) 5 /90°

so, in the time domain,

i 5 Ï2w1 2 sin(qt 1 90°)

The fact that vC 5 290° will now be employed in the following

polar format for capacitive reactance to ensure the proper phase rela-

tionship between the voltage and current of a capacitor.

(15.3)

The boldface roman quantity ZC, having both magnitude and an

associated angle, is referred to as the impedance of a capacitive ele-

ment. It is measured in ohms and is a measure of how much the capac-

itive element will “control or impede” the level of current through the

network (always keep in mind that capacitive elements are storage

devices and do not dissipate like resistors). The above format, like that

defined for the resistive element, will prove a very useful “tool” in the

analysis of ac networks. Again, be aware that ZC is not a phasor quan-

tity, for the same reasons indicated for a resistive element.

EXAMPLE 15.5 Using complex algebra, find the current i for the cir-

cuit of Fig. 15.14. Sketch the v and i curves.

Solution: Note Fig. 15.15:

ZC 5 XC /290°

V
}
XC

V
}
XC

V
}
XC

V /0°
}}
XC /290°

V
}
XC

V /0°
}
XC /vC

a c

v  =  15 sin qt

+

–

XC  =  2 V

i

FIG. 15.14
Example 15.5.

15 V

0

7.5 A

2
p p 3p 2p

v

i

90°
2
p–

2
  tv

FIG. 15.15
Waveforms for Example 15.5.

v  = Vm sin qt

+

–

i

XC  =  1/qC

FIG. 15.13
Capacitive ac circuit.



The phasor diagrams for the two circuits of the two preceding exam-

ples are shown in Fig. 15.18. Both indicate quite clearly that the current

i leads the voltage v by 90°.

+

j

I

V

10.605 V

Leading
5.303 A

+

j

Leading

V

I

60°2.121 V

4.242 A

(a) (b)
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v 5 15 sin qt ⇒ phasor notation V 5 10.605 V /0°

I 5 5 5 5 5.303 A /90°

and i 5 Ï2w(5.303) sin(qt 1 90°) 5 7.5 sin(qt 1 90°)

EXAMPLE 15.6 Using complex algebra, find the voltage v for the cir-

cuit of Fig. 15.16. Sketch the v and i curves.

Solution: Note Fig. 15.17:

i 5 6 sin(qt 2 60°) ⇒ phasor notation I 5 4.242 A /260°

V5 IZC 5 (I /v)(XC /290°) 5 (4.242 A /260°)(0.5 V /290°)

5 2.121 V /2150°

and v 5 Ï2w(2.121) sin(qt 2 150°) 5 3.0 sin(qt 2 150°)

10.605 V /0°
}}

2 V /290°

V /v
}}
XC /290°

V
}
ZC

a c

v
+

–
XC  =  0.5 V

i  =  6 sin(qt  –  60°)

FIG. 15.16
Example 15.6.

3 V

0

6 A

p

v

i

90°
60°

  tv3p5p
2

2p
2
p 3p

2

FIG. 15.18
Phasor diagrams for Examples 15.5 and 15.6.

Impedance Diagram
Now that an angle is associated with resistance, inductive reactance,

and capacitive reactance, each can be placed on a complex plane dia-

FIG. 15.17
Waveforms for Example 15.6.
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gram, as shown in Fig. 15.19. For any network, the resistance will

always appear on the positive real axis, the inductive reactance on the

positive imaginary axis, and the capacitive reactance on the negative

imaginary axis. The result is an impedance diagram that can reflect

the individual and total impedance levels of an ac network.

We will find in the sections and chapters to follow that networks

combining different types of elements will have total impedances that

extend from 290° to 190°. If the total impedance has an angle of 0°,

it is said to be resistive in nature. If it is closer to 90°, it is inductive in

nature; and if it is closer to 290°, it is capacitive in nature.

Of course, for single-element networks the angle associated with the

impedance will be the same as that of the resistive or reactive element,

as revealed by Eqs. (15.1) through (15.3). It is important to stay aware

that impedance, like resistance or reactance, is not a phasor quantity

representing a time-varying function with a particular phase shift. It is

simply an operating “tool” that is extremely useful in determining the

magnitude and angle of quantities in a sinusoidal ac network.

Once the total impedance of a network is determined, its magnitude

will define the resulting current level (through Ohm’s law), whereas its

angle will reveal whether the network is primarily inductive or capaci-

tive or simply resistive.

For any configuration (series, parallel, series-parallel, etc.), the

angle associated with the total impedance is the angle by which the

applied voltage leads the source current. For inductive networks, vT

will be positive, whereas for capacitive networks, vT will be

negative.

15.3 SERIES CONFIGURATION
The overall properties of series ac circuits (Fig. 15.20) are the same as

those for dc circuits. For instance, the total impedance of a system is the

sum of the individual impedances:

(15.4)ZT 5 Z1 1 Z2 1 Z3 1 ⋅ ⋅ ⋅ 1 ZN

a c

I

ZT

I I I
ZNZ3Z2Z1

I

FIG. 15.20
Series impedances.

EXAMPLE 15.7 Draw the impedance diagram for the circuit of Fig.

15.21, and find the total impedance.

Solution: As indicated by Fig. 15.22, the input impedance can be

found graphically from the impedance diagram by properly scaling the

R  =  4 V XL  =  8 V

ZT

FIG. 15.21
Example 15.7.

+ 90°

j

– 90°

XL ∠90°

XC ∠90°

R ∠0° +

FIG. 15.19
Impedance diagram.



XL  =  8 V

j

Z T

+R  =  4 V

vT

FIG. 15.22
Impedance diagram for Example 15.7.

+

j

ZT

Tθ

R = 6 Ω

XL = 10 Ω

XC – XL = 2 Ω

XC = 12 Ω
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real and imaginary axes and finding the length of the resultant vector ZT

and angle vT. Or, by using vector algebra, we obtain

ZT 5 Z1 1 Z2

5 R /0° 1 XL /90°

5 R 1 jXL 5 4 V 1 j8 V

ZT 5 8.944 V /63.43°

EXAMPLE 15.8 Determine the input impedance to the series network

of Fig. 15.23. Draw the impedance diagram.

Solution:
ZT 5 Z1 1 Z2 1 Z3

5 R /0° 1 XL /90° 1 XC /290°

5 R 1 jXL 2 jXC

5 R 1 j(XL 2 XC) 5 6 V 1 j(10 V 2 12 V) 5 6 V 2 j2 V

ZT 5 6.325 V /218.43°

The impedance diagram appears in Fig. 15.24. Note that in this

example, series inductive and capacitive reactances are in direct oppo-

sition. For the circuit of Fig. 15.23, if the inductive reactance were

equal to the capacitive reactance, the input impedance would be purely

resistive. We will have more to say about this particular condition in a

later chapter.

For the representative series ac configuration of Fig. 15.25 having

two impedances, the current is the same through each element (as it

was for the series dc circuits) and is determined by Ohm’s law:

ZT 5 Z1 1 Z2

and (15.5)

The voltage across each element can then be found by another applica-

tion of Ohm’s law:

(15.6a)

(15.6b)

Kirchhoff’s voltage law can then be applied in the same manner as it

is employed for dc circuits. However, keep in mind that we are now

dealing with the algebraic manipulation of quantities that have both

magnitude and direction.

E 2 V1 2 V2 5 0

or (15.7)

The power to the circuit can be determined by

(15.8)

where vT is the phase angle between E and I.

P 5 EI cos vT

E 5 V1 1 V2

V2 5 IZ2

V1 5 IZ1

I 5 }
Z

E

T

}

a c

ZT

Z1

R  =  6 V

Z2

XL  =  10 V

Z3

XC  =  12 V

FIG. 15.23
Example 15.8

FIG. 15.24
Impedance diagram for Example 15.8.

I

Z2

Z1

+

V2

–

V1 –+

E

+

ZT
–

FIG. 15.25
Series ac circuit.
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j

R = 3 V

XL = 4 Ω

Z 
=
 5

 V

Tθ = 53.13°

+

–

I

R = 3 V XL = 4 Ω

VR+ – VL+ –

E = 100 V / 0°
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Now that a general approach has been introduced, the simplest of

series configurations will be investigated in detail to further emphasize

the similarities in the analysis of dc circuits. In many of the circuits to

be considered, 3 1 j4 5 5 /53.13° and 4 1 j3 5 5 /36.87° will be

used quite frequently to ensure that the approach is as clear as possible

and not lost in mathematical complexity. Of course, the problems at 

the end of the chapter will provide plenty of experience with random 

values.

R-L
Refer to Fig. 15.26.

Phasor Notation
e 5 141.4 sin qt ⇒ E 5 100 V /0°

Note Fig. 15.27.

a c

R  =  3 V XL  =  4 V

vL –+vR –+

–

+

e =  141.4 sin qt i

FIG. 15.26
Series R-L circuit.

FIG. 15.27
Applying phasor notation to the network of Fig. 15.26.

FIG. 15.28
Impedance diagram for the series R-L circuit

of Fig. 15.26.

ZT
ZT 5 Z1 1 Z2 5 3 V /0° 1 4 V /90° 5 3 V 1j4 V

and ZT 5 5 V /53.13°

Impedance diagram: See Fig. 15.28.

I
I 5 5 5 20 A /253.13°

VR and VL
Ohm’s law:

VR 5 IZR 5 (20 A /253.13°)(3 V /0°)

5 60 V/253.13°

VL 5 IZL 5 (20 A /253.13°)(4 V /90°)

5 80 V /36.87°

Kirchhoff’s voltage law:

V 5 E 2 VR 2 VL 5 0

or E 5 VR 1 VL

S

100 V /0°
}}
5 V /53.13°

E
}
ZT



+

j

80 V

60 V

VR

I

53.13° E

VL

36.87°
100 V
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In rectangular form,

VR 5 60 V /253.13° 5 36 V 2 j 48 V

VL 5 80 V /136.87° 5 64 V 1 j 48 V

and

E 5 VR 1 VL 5 (36 V 2 j 48 V) 1 (64 V 1 j 48 V) 5 100 V 1 j 0

5 100 V /0°

as applied.

Phasor diagram: Note that for the phasor diagram of Fig. 15.29, I

is in phase with the voltage across the resistor and lags the voltage

across the inductor by 90°.

Power: The total power in watts delivered to the circuit is

PT 5 EI cos vT

5 (100 V)(20 A) cos 53.13° 5 (2000 W)(0.6)

5 1200 W

where E and I are effective values and vT is the phase angle between E

and I, or

PT 5 I2R

5 (20 A)2(3 V) 5 (400)(3)

5 1200 W

where I is the effective value, or, finally,

PT 5 PR 1 PL 5 VRI cos vR 1 VLI cos vL

5 (60 V)(20 A) cos 0° 1 (80 V)(20 A) cos 90°

5 1200 W 1 0

5 1200 W

where vR is the phase angle between VR and I, and vL is the phase angle

between VL and I.

Power factor: The power factor Fp of the circuit is cos 53.13° 5

0.6 lagging, where 53.13° is the phase angle between E and I.

If we write the basic power equation P 5 EI cos v as follows:

cos v 5

where E and I are the input quantities and P is the power delivered to

the network, and then perform the following substitutions from the

basic series ac circuit:

cos v 5 5 5 5 5

we find (15.9)

Reference to Fig. 15.28 also indicates that v is the impedance angle

vT as written in Eq. (15.9), further supporting the fact that the imped-

ance angle vT is also the phase angle between the input voltage and cur-

rent for a series ac circuit. To determine the power factor, it is necessary

Fp 5 cos vT 5 }
Z

R

T

}

R
}
ZT

R
}
E/I

IR
}
E

I2R
}
EI

P
}
EI

P
}
EI

a c

FIG. 15.29
Phasor diagram for the series R-L circuit of

Fig. 15.26.
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 V
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E
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53.13°
36.87°

I 50 V

j

40 V

+

j

Tθ = 53.13°

R = 6 V

Z
T  =

 10 ΩXC = 8 Ω

R = 6 V

VR+ –

XC = 8 Ω

VC+ –I = 5 /53.13°

I E
+

–

ZT
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only to form the ratio of the total resistance to the magnitude of the

input impedance. For the case at hand,

Fp 5 cos v 5 5 5 0.6 lagging

as found above.

R-C
Refer to Fig. 15.30.

Phasor Notation
i 5 7.07 sin(qt 1 53.13°) ⇒ I 5 5 A /53.13°

Note Fig. 15.31.

3 V
}
5 V

R
}
ZT

a c

FIG. 15.31
Applying phasor notation to the circuit of Fig. 15.30.

ZT
ZT 5 Z1 1 Z2 5 6 V /0° 1 8 V /290° 5 6 V 2 j8 V

and ZT 5 10 V /253.13°

Impedance diagram: As shown in Fig. 15.32.

E
E 5 IZT 5 (5 A /53.13°)(10 V /253.13°) 5 50 V /0°

VR and VC
VR 5 IZR 5 (I /v)(R /0°) 5 (5 A /53.13°)(6 V /0°)

5 30 V /53.13°

VC 5 IZC 5 (I /v)(XC /290°) 5 (5 A /53.13°)(8 V /290°)

5 40 V /236.87°

Kirchhoff’s voltage law:

V 5 E 2 VR 2 VC 5 0

or E 5 VR 1 VC

which can be verified by vector algebra as demonstrated for the R-L

circuit.

Phasor diagram: Note on the phasor diagram of Fig. 15.33 that the

current I is in phase with the voltage across the resistor and leads the

voltage across the capacitor by 90°.

S

FIG. 15.32
Impedance diagram for the series R-C circuit

of Fig. 15.30.

FIG. 15.33
Phasor diagram for the series R-C circuit 

of Fig. 15.30.

R  =  6 V XC  =  8 V

vC –+vR –+

i =  7.07 sin(qt +  53.13°)

FIG. 15.30
Series R-C ac circuit.
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a c

70.70 V

56.56 V

42.42 V
vR

e

vC

36.87°

90°

i
p0   tv

p2
p

2
3

p

2
p

2
–

Power: The total power in watts delivered to the circuit is

PT 5 EI cos vT 5 (50 V)(5 A) cos 53.13°

5 (250)(0.6) 5 150 W

or PT 5 I2R 5 (5 A)2(6 V) 5 (25)(6)

5 150 W

or, finally,

PT 5 PR 1 PC 5 VRI cos vR 1 VC I cos vC

5 (30 V)(5 A) cos 0° 1 (40 V)(5 A) cos 90°

5 150 W 1 0

5 150 W

Power factor: The power factor of the circuit is

Fp 5 cos v 5 cos 53.13° 5 0.6 leading

Using Eq. (15.9), we obtain

Fp 5 cos v 5 5

5 0.6 leading

as determined above.

6 V
}
10 V

R
}
ZT

FIG. 15.34
Waveforms for the series R-C circuit of Fig. 15.30.

Time domain: In the time domain,

e 5 Ï2w(50) sin qt 5 70.70 sin qt

vR 5 Ï2w(30) sin(qt 1 53.13°) 5 42.42 sin(qt 1 53.13°)

vC 5 Ï2w(40) sin(qt 2 36.87°) 5 56.56 sin(qt 2 36.87°)

A plot of all of the voltages and the current of the circuit appears

in Fig. 15.34. Note again that i and vR are in phase and that vC lags i

by 90°.



+

j

XL = 7 Ω

XL – XC = 4 Ω

XC = 3 Ω

R = 3 Ω

Z T
 =

 5
Ω

θT  = 53.13°
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R-L-C
Refer to Fig. 15.35.

a c

R  =  3 V XC  =  3 V

VC –+VR –+

E =  50 V ∠ 0°

VL –+

XL  =  7 V

–

+

I

ZT
ZT 5 Z1 1 Z2 1 Z35 R /0° 1 XL /90° 1 XC /290°

5 3 V 1 j 7 V 2 j 3 V 5 3 V 1 j 4 V

and ZT 5 5 V /53.13°

Impedance diagram: As shown in Fig. 15.37.

I
I 5 5 5 10 A /253.13°

VR,VL, and VC
VR 5 IZR 5 (I /v)(R /0°) 5 (10 A /253.13°)(3 V /0°)

5 30 V /253.13°

VL 5 IZL 5 (I /v)(XL /90°) 5 (10 A /253.13°)(7 V /90°)

5 70 V /36.87°

VC 5 IZC 5 (I /v)(XC /290°) 5 (10 A /253.13°)(3 V /290°)

5 30 V /2143.13°

Kirchhoff’s voltage law:

V 5 E 2 VR 2 VL 2 VC 5 0S

50 V /0°
}}
5 V /53.13°

E
}
ZT

FIG. 15.36
Applying phasor notation to the circuit of Fig. 15.35.

FIG. 15.37
Impedance diagram for the series R-L-C

circuit of Fig. 15.35.

R   =  3 V XC  =  3 V

vC –+vR –+

e =  70.7 sin qt

vL –+

XL  =  7 V

–

+

i

FIG. 15.35
Series R-L-C ac circuit.

Phasor Notation As shown in Fig. 15.36.



V L
 – V C

VC

VL

E

36.87°

53.13°
I

j

+

VR
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a c

FIG. 15.38
Phasor diagram for the series R-L-C circuit of

Fig. 15.35.

or E 5 VR 1 VL 1 VC

which can also be verified through vector algebra.

Phasor diagram: The phasor diagram of Fig. 15.38 indicates that

the current I is in phase with the voltage across the resistor, lags the

voltage across the inductor by 90°, and leads the voltage across the

capacitor by 90°.

Time domain:

i 5 Ï2w(10) sin(qt 2 53.13°) 5 14.14 sin(qt 2 53.13°)

vR 5 Ï2w(30) sin(qt 253.13°) 5 42.42 sin(qt 2 53.13°)

vL 5 Ï2w(70) sin(qt 1 36.87°) 5 98.98 sin(qt 1 36.87°)

vC 5 Ï2w(30) sin(qt 2 143.13°) 5 42.42 sin(qt 2 143.13°)

A plot of all the voltages and the current of the circuit appears in Fig.

15.39.

FIG. 15.39
Waveforms for the series R-L circuit of Fig. 15.35.

98.98 V

70.70 V

42.42 V

vL

vC

53.13°
90°

p0

36.87°

e

vR

i

  tvp3
p

2
5p2

p
2
3p

2
p

2
–

Power: The total power in watts delivered to the circuit is

PT 5 EI cos vT 5 (50 V)(10 A) cos 53.13° 5 (500)(0.6) 5 300 W

or PT 5 I2R 5 (10 A)2(3 V) 5 (100)(3) 5 300 W

or

PT 5 PR 1 PL 1 PC

5 VRI cos vR 1 VLI cos vL 1 VC I cos vC

5 (30 V)(10 A) cos 0° 1 (70 V)(10 A) cos 90° 1 (30 V)(10 A) cos 90°

5 (30 V)(10 A) 1 0 1 0 5 300 W

Power factor: The power factor of the circuit is

Fp 5 cos vT 5 cos 53.13° 5 0.6 lagging

Using Eq. (15.9), we obtain

Fp 5 cos v 5 5 5 0.6 lagging
3 V
}
5 V

R
}
ZT



a c

15.4 VOLTAGE DIVIDER RULE
The basic format for the voltage divider rule in ac circuits is exactly

the same as that for dc circuits:

(15.10)

where Vx is the voltage across one or more elements in series that have

total impedance Zx, E is the total voltage appearing across the series

circuit, and ZT is the total impedance of the series circuit.

EXAMPLE 15.9 Using the voltage divider rule, find the voltage across

each element of the circuit of Fig. 15.40.

Solution:
VC 5 5 5

5 5 80 V /236.87°

VR 5 5 5

5 60 V /153.13°

EXAMPLE 15.10 Using the voltage divider rule, find the unknown

voltages VR, VL, VC, and V1 for the circuit of Fig. 15.41.

300 /0°
}}
5 /253.13°

(3 V /0°)(100 V /0°)
}}}

5 V /253.13°

ZRE
}
ZC 1 ZR

400 /290°
}}
5 /253.13°

400 /290°
}}

3 2 j 4

(4 V /290°)(100 V /0°)
}}}

4 V /290° 1 3 V /0°

ZCE
}
ZC 1 ZR

Vx 5 }
Z

Z
x

T

E
}
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R  =  6 V XC  =  17 V

VC –+VR –+

E  =  50 V ∠ 30°
–

+

V1

XL  =  9 V

VL –+

Solution:
VR 5 5

5 5

5 5 30 V /83.13°

Calculator The above calculation provides an excellent opportunity

to demonstrate the power of today’s calculators. Using the notation of

the TI-86 calculator, the above calculation and the result are as follows:

300 /30°
}}
10 /253.13°

300 /30°
}}

6 2 j 8

300 /30°
}}
6 1 j 9 2 j 17

(6 V /0°)(50 V /30°)
}}}}
6 V /0° 1 9 V /90° 1 17 V /290°

ZRE
}}
ZR 1 ZL 1 ZC

FIG. 15.41
Example 15.10.

R  =  3 V XC  =  4 V

VC –+VR –+

E  =  100 V ∠ 0°
–

+

FIG. 15.40
Example 15.9.



VOLTAGE DIVIDER RULE  645

CALC. 15.1

VL 5 5 5

5 45 V /173.13°

VC 5 5 5

5 85 V /26.87°

V1 5 5

5

5 5 40 V /26.87°

EXAMPLE 15.11 For the circuit of Fig. 15.42:

400 /260°
}}
10 /253.13°

(8 /290°)(50 /30°)
}}}

10 /253.13°

(9 V /90° 1 17 V /290°)(50 V /30°)
}}}}}

10 V /253.13°

(ZL 1 ZC)E
}}

ZT

850 V/260°
}}

10 /253°

(17 V /290°)(50 V /30°)
}}}

10 V /253.13°

ZCE
}
ZT

450 V/120°
}}
10 /253.13°

(9 V /90°)(50 V /30°)
}}}

10 V /253.13°

ZLE
}
ZT

a c

R1  =  6 V L2  =  0.05 H

vC
–+–+

e  = =2(20) sin 377t

–

+ vL
–+

L1  =  0.05 H

vR

R2  =  4 V

C2  =  200 mFC1  =  200 mF

i

FIG. 15.42
Example 15.11.

a. Calculate I, VR, VL, and VC in phasor form.

b. Calculate the total power factor.

c. Calculate the average power delivered to the circuit.

d. Draw the phasor diagram.

e. Obtain the phasor sum of VR, VL, and VC, and show that it equals the

input voltage E.

f. Find VR and VC using the voltage divider rule.

Solutions:
a. Combining common elements and finding the reactance of the

inductor and capacitor, we obtain

RT 5 6 V 1 4 V 5 10 V

LT 5 0.05 H 1 0.05 H 5 0.1 H

CT 5 5 100 mF
200 mF
}

2

(6/0)*(50/30)/((6/0)1(9/90)1(17/290))
(3.588E0,29.785E0)

Ans c Pol
(30.000E0/83.130E0)



VC

VL

E

41.84°

48.16°
I

j

+

VR

VL
 –

 V
C
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a c

XL 5 qL 5 (377 rad/s)(0.1 H) 5 37.70 V

XC 5 5 5 5 26.53 V

Redrawing the circuit using phasor notation results in Fig. 15.43.

106
V

}
37,700

1
}}}
(377 rad/s)(100 3 1026 F)

1
}
qC

FIG. 15.44
Phasor diagram for the circuit of Fig. 15.42.

FIG. 15.43
Applying phasor notation to the circuit of  Fig. 15.42.

R  =  10 V XC  =  26.53 V

VC –+VR –+

E  =  20 V ∠ 0°
–

+

I

XL  =  37.70 V

VL –+

For the circuit of Fig. 15.43,

ZT 5 R /0° 1 XL /90° 1 XC /290°

5 10 V 1 j 37.70 V 2 j 26.53 V

5 10 V 1 j 11.17 V 5 15 V /48.16°

The current I is

I 5 5 5 1.33 A /248.16°

The voltage across the resistor, inductor, and capacitor can be found

using Ohm’s law:

VR 5 IZR 5 (I /v)(R /0°) 5 (1.33 A /248.16°)(10 V /0°)

5 13.30 V /248.16°

VL 5 IZL 5 (I /v)(XL /90°) 5 (1.33 A /248.16°)(37.70 V /90°)

5 50.14 V /41.84°

VC 5 IZC 5 (I /v)(XC /290°) 5 (1.33A /248.16°)(26.53 V/290°)

5 35.28 V /2138.16°

b. The total power factor, determined by the angle between the applied

voltage E and the resulting current I, is 48.16°:

Fp 5 cos v 5 cos 48.16° 5 0.667 lagging

or Fp 5 cos v 5 5 5 0.667 lagging

c. The total power in watts delivered to the circuit is

PT 5 EI cos v 5 (20 V)(1.33 A)(0.667) 5 17.74 W

d. The phasor diagram appears in Fig. 15.44.

e. The phasor sum of VR, VL, and VC is

E 5 VR 1 VL 1 VC

5 13.30 V /248.16° 1 50.14 V /41.84° 1 35.28 V /2138.16°

E 5 13.30 V /248.16° 1 14.86 V /41.84°

10 V
}
15 V

R
}
ZT

20 V /0°
}}
15 V /48.16°

E
}
ZT
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Therefore,

E 5 Ï(1w3w.3w0w Vw)2w 1w (w1w4w.8w6w Vw)2w 5 20 V

and vE 5 0° (from phasor diagram)

and E 5 20 /0°

f. VR 5 5 5

5 13.3 V /248.16°

VC 5 5 5

5 35.37 V /2138.16°

15.5 FREQUENCY RESPONSE OF THER-C CIRCUIT
Thus far, the analysis of series circuits has been limited to a particular

frequency. We will now examine the effect of frequency on the response

of an R-C series configuration such as that in Fig. 15.45. The magnitude

of the source is fixed at 10 V, but the frequency range of analysis will

extend from zero to 20 kHz.

530.6 V/290°
}}

15 /48.16°

(26.5 V /290°)(20 V /0°)
}}}

15 V /48.16°

ZCE
}
ZT

200 V/0°
}}
15 /48.16°

(10 V /0°)(20 V /0°)
}}}

15 V /48.16°

ZRE
}
ZT

a c

5 kV

ZTE  =  10 V ∠ 0°
–

+

R

C 0.01 mF

–

+

VC

f : 0 to 20 kHz

FIG. 15.45
Determining the frequency response of a series R-C circuit.

ZT Let us first determine how the impedance of the circuit ZT will

vary with frequency for the specified frequency range of interest.

Before getting into specifics, however, let us first develop a sense for

what we should expect by noting the impedance-versus-frequency

curve of each element, as drawn in Fig. 15.46.

At low frequencies the reactance of the capacitor will be quite high

and considerably more than the level of the resistance R, suggesting that

the total impedance will be primarily capacitive in nature. At high fre-

quencies the reactance XC will drop below the R 5 5-kV level, and the

network will start to shift toward one of a purely resistive nature (at

5 kV). The frequency at which XC 5 R can be determined in the fol-

lowing manner:

XC 5 5 R

and
XC 5 R

(15.11)f1 5 }
2p

1

RC
}

1
}
2pf1C
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which for the network of interest is

f1 5 > 3183.1 Hz

For frequencies less than f1, XC > R, and for frequencies greater than f1,

R > XC, as shown in Fig. 15.46.

Now for the details. The total impedance is determined by the fol-

lowing equation:

ZT 5 R 2 j XC

and (15.12)

The magnitude and angle of the total impedance can now be found

at any frequency of interest by simply substituting into Eq. (15.12). The

presence of the capacitor suggests that we start from a low frequency

(100 Hz) and then open the spacing until we reach the upper limit of

interest (20 kHz).

f 5 100 Hz

XC 5 5 5 159.16 kV

and ZT 5 ÏRw2w1w Xw2
Cw 5 Ï(5w kwVw)2w 1w (w1w5w9w.1w6w kwVw)2w 5 159.24 kV

with vT 5 2tan21
5 2tan21

5 2tan21 31.83

5 288.2°

and ZT 5 159.24 kV /288.2°

which compares very closely with ZC 5 159.16 kV /290° if the cir-

cuit were purely capacitive (R 5 0 V). Our assumption that the circuit

is primarily capacitive at low frequencies is therefore confirmed.

159.16 kV
}}

5 kV

XC
}
R

1
}}}
2p(100 Hz)(0.01 mF)

1
}
2pfC

ZT 5 ZT /vT 5 ÏRw2w1w Xw2
Cw /2tan21

}
X

R
C
}

1
}}}
2p(5 kV)(0.01 mF)

a c

0

R = 5 kV

ZT XC = 1
2   fC

f

5 kV

R

XC

5 kV

R < XC R > XC

0 f

p

f1

FIG. 15.46
The frequency response of the individual elements of a series R-C circuit.
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f 5 1 kHz

XC 5 5 5 15.92 kV

and ZT 5 ÏRw2w1w Xw2
Cw 5 Ï(5w kwVw)2w 1w (w1w5w.9w2w kwVw)2w 5 16.69 kV

with vT 5 2tan21
5 2tan21

5 2tan21 3.18 5 272.54°

and ZT 5 16.69 kV /272.54°

A noticeable drop in the magnitude has occurred, and the impedance

angle has dropped almost 17° from the purely capacitive level.

Continuing:

f 5 5 kHz: ZT 5 5.93 kV /232.48°

f 5 10 kHz: ZT 5 5.25 kV /217.66°

f 5 15 kHz: ZT 5 5.11 kV /211.98°

f 5 20 kHz: ZT 5 5.06 kV /29.04°

Note how close the magnitude of ZT at f 5 20 kHz is to the resistance

level of 5 kV. In addition, note how the phase angle is approaching that

associated with a pure resistive network (0°).

A plot of ZT versus frequency in Fig. 15.47 completely supports our

assumption based on the curves of Fig. 15.46. The plot of vT versus fre-

quency in Fig. 15.48 further suggests the fact that the total impedance

made a transition from one of a capacitive nature (vT 5 290°) to one

with resistive characteristics (vT 5 0°).

15.92 kV
}}

5 kV

XC
}
R

1
}}}
2p(1 kHz)(0.01 mF)

1
}
2pfC

a c

50 101 15 20 f (kHz)

Circuit resistive

Circuit capacitive

5

10

15

20

ZT (kV)

R  =  5 kV

ZT ( f )

FIG. 15.47
The magnitude of the input impedance versus frequency for the circuit of 

Fig. 15.45.
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Applying the voltage divider rule to determine the voltage across the

capacitor in phasor form yields

VC 5

5 5

5

or VC 5VC /vC 5 /290° 1 tan21(XC/R)

The magnitude of VC is therefore determined by

VC 5 (15.13)

and the phase angle vC by which VC leads E is given by

(15.14)

To determine the frequency response, XC must be calculated for each

frequency of interest and inserted into Eqs. (15.13) and (15.14).

To begin our analysis, it makes good sense to consider the case of 

f 5 0 Hz (dc conditions).

vC 5 290° 1 tan21
}
X

R

C
} 5 2tan21

}
X

R

C

}

XCE
}}
ÏRw2w1w Xw2

Cw

XC E
}}
ÏRw2w1w Xw2

Cw

XC E /290°
}}}
ÏRw2w1w Xw2

Cw /2tan21 XC/R

XC E /290°
}}

R 2 j XC

(XC /290°)(E /0°)
}}}

R 2 j XC

ZCE
}
ZR 1 ZC

a c

5

0°

101 15 20 f (kHz)

Circuit capacitive

–45°

–30°

–60°

–90°

Circuit resistive

  Tθ

  T ( f )θ

FIG. 15.48
The phase angle of the input impedance versus frequency for the circuit of 

Fig. 15.45.
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f 5 0 Hz
XC 5 5 ⇒ very large value

Applying the open-circuit equivalent for the capacitor based on the

above calculation will result in the following:

VC 5 E 5 10 V /0°

If we apply Eq. (15.13), we find

X2
C >> R2

and ÏRw2w1w Xw2
Cw > ÏXw2

Cw 5 XC

and VC 5 5 5 E

with vC 5 2tan21
5 2tan21 0 5 0°

verifying the above conclusions.

f 5 1 kHz Applying Eq. (15.13):

XC 5 5 > 15.92 kV

ÏRw2w1w Xw2
Cw 5 Ï(5w kwVw)2w 1w (w1w5w.9w2w kwVw)2w > 16.69 kV

and VC 5 5 5 9.54 V

Applying Eq. (15.14):

vC 5 2tan21
5 2tan21

5 2tan21 0.314 5 217.46°

and VC 5 9.53 V /217.46°

As expected, the high reactance of the capacitor at low frequencies has

resulted in the major part of the applied voltage appearing across the

capacitor.

If we plot the phasor diagrams for f 5 0 Hz and f 5 1 kHz, as shown

in Fig. 15.49, we find that VC is beginning a clockwise rotation with an

increase in frequency that will increase the angle vC and decrease the

phase angle between I and E. Recall that for a purely capacitive net-

5 kV
}
15.9 kV

R
}
XC

(15.92 kV)(10)
}}

16.69 kV

XCE
}}
ÏRw2w1w Xw2

Cw

1
}}}}
(2p)(1 3 103 Hz)(0.01 3 1026 F)

1
}
2pfC

R
}
XC

XCE
}
XC

XCE
}}
ÏRw2w1w Xw2

Cw

1
}
0

1
}
2p(0)C

a c

I  =  0 A

f  = 0 Hz

E

VC
E

I

VR

f  = 1 kHz

–17.46°

VC

  Cθ

  Iθ

  C  =  0°θ
  I  =  90°θ

FIG. 15.49
The phasor diagram for the circuit of Fig. 15.45 for f 5 0 Hz and 1 kHz.
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work, I leads E by 90°. As the frequency increases, therefore, the

capacitive reactance is decreasing, and eventually R >> XC with vC 5

290°, and the angle between I and E will approach 0°. Keep in mind

as we proceed through the other frequencies that vC is the phase angle

between VC and E and that the magnitude of the angle by which I leads

E is determined by

(15.15)

f 5 5 kHz Applying Eq. (15.13):

XC 5 5 > 3.18 kV

Note the dramatic drop in XC from 1 kHz to 5 kHz. In fact, XC is now

less than the resistance R of the network, and the phase angle deter-

mined by tan21(XC /R) must be less than 45°. Here,

VC 5 5 5 5.37 V

with vC 5 2tan21
5 2tan21

5 2tan21 1.56 5 257.38°

f 5 10 kHz
XC > 1.59 kV VC 5 3.03 V vC 5 272.34°

f 5 15 kHz
XC > 1.06 kV VC 5 2.07 V vC 5 278.02°

f 5 20 kHz
XC > 795.78 V VC 5 1.57 V vC 5 280.96°

The phasor diagrams for f 5 5 kHz and f 5 20 kHz appear in Fig.

15.50 to show the continuing rotation of the VC vector.

5 kV
}
3.2 kV

R
}
XC

(3.18 kV)(10 V)
}}}

Ï(5w kwVw)2w 1w (w3w.1w8w kwVw)2w
XCE

}}
ÏRw2w1w Xw2

Cw

1
}}}}
(2p)(5 3 103 Hz)(0.01 3 1026 F)

1
}
2pfC

 vI 5 90° 2  vC

a c

I

IVR

f  = 20 kHz

VR

E

VC

f  = 5 kHz

E

VC

  C  =  –80.96°θ  C  =  –57.38°θ

FIG. 15.50
The phasor diagram for the circuit of Fig. 15.45 for f 5 5 kHz and 20 kHz.

Note also from Figs. 15.49 and 15.50 that the vector VR and the cur-

rent I have grown in magnitude with the reduction in the capacitive

reactance. Eventually, at very high frequencies XC will approach zero
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a c

VC ≅ 0 V E

VR
vI ≅  0°
vC ≅  –90°

f  =  very high frequencies

FIG. 15.51
The phasor diagram for the circuit of Fig.

15.45 at very high frequencies.

50 101 15 20 f (kHz)

Network resistive

Network capacitive

4

9

10

VC

VC ( f )

8

7

6

5

3

2

1

ohms and the short-circuit equivalent can be applied, resulting in VC >
0 V and vC > 290°, and producing the phasor diagram of Fig. 15.51.

The network is then resistive, the phase angle between I and E is essen-

tially zero degrees, and VR and I are their maximum values.

A plot of VC versus frequency appears in Fig. 15.52. At low fre-

quencies XC >> R, and VC is very close to E in magnitude. As the

FIG. 15.52
The magnitude of the voltage VC versus frequency for the circuit of Fig. 15.45.

FIG. 15.53
The phase angle between E and VC versus frequency for the circuit of 

Fig. 15.45.

50 10 15 20 f (kHz)

Network capacitive
–30°

–60°

–90°

Network resistive

1

  C ( f )θ

  C (phase angle between E and VC)θ

applied frequency increases, XC decreases in magnitude along with VC

as VR captures more of the applied voltage. A plot of vC versus fre-

quency is provided in Fig. 15.53. At low frequencies the phase angle
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between VC and E is very small since VC > E. Recall that if two pha-

sors are equal, they must have the same angle. As the applied frequency

increases, the network becomes more resistive and the phase angle

between VC and E approaches 90°. Keep in mind that, at high frequen-

cies, I and E are approaching an in-phase situation and the angle

between VC and E will approach that between VC and I, which we

know must be 90° (IC leading VC).

A plot of VR versus frequency would approach E volts from zero

volts with an increase in frequency, but remember VR ? E 2 VC due to

the vector relationship. The phase angle between I and E could be plot-

ted directly from Fig. 15.53 using Eq. (15.15).

In Chapter 23, the analysis of this section will be extended to a much

wider frequency range using a log axis for frequency. It will be demon-

strated that an R-C circuit such as that in Fig. 15.45 can be used as a fil-

ter to determine which frequencies will have the greatest impact on the

stage to follow. From our current analysis, it is obvious that any net-

work connected across the capacitor will receive the greatest potential

level at low frequencies and be effectively “shorted out” at very high

frequencies.

The analysis of a series R-L circuit would proceed in much the same

manner, except that XL and VL would increase with frequency and the

angle between I and E would approach 90° (voltage leading the cur-

rent) rather than 0°. If VL were plotted versus frequency, VL would

approach E, and XL would eventually attain a level at which the open-

circuit equivalent would be appropriate.

15.6 SUMMARY: SERIES ac CIRCUITS
The following is a review of important conclusions that can be derived

from the discussion and examples of the previous sections. The list is

not all-inclusive, but it does emphasize some of the conclusions that

should be carried forward in the future analysis of ac systems.

For series ac circuits with reactive elements:

1. The total impedance will be frequency dependent.

2. The impedance of any one element can be greater than the total

impedance of the network.

3. The inductive and capacitive reactances are always in direct

opposition on an impedance diagram.

4. Depending on the frequency applied, the same circuit can be

either predominantly inductive or predominantly capacitive.

5. At lower frequencies the capacitive elements will usually have the

most impact on the total impedance, while at high frequencies the

inductive elements will usually have the most impact.

6. The magnitude of the voltage across any one element can be

greater than the applied voltage.

7. The magnitude of the voltage across an element compared to the

other elements of the circuit is directly related to the magnitude

of its impedance; that is, the larger the impedance of an

element, the larger the magnitude of the voltage across the

element.

8. The voltages across a coil or capacitor are always in direct

opposition on a phasor diagram.

9. The current is always in phase with the voltage across the

resistive elements, lags the voltage across all the inductive

a c
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elements by 90°, and leads the voltage across all the capacitive

elements by 90°.

10. The larger the resistive element of a circuit compared to the net

reactive impedance, the closer the power factor is to unity.

PARALLEL ac CIRCUITS

15.7 ADMITTANCE AND SUSCEPTANCE
The discussion for parallel ac circuits will be very similar to that for

dc circuits. In dc circuits, conductance (G) was defined as being equal

to 1/R. The total conductance of a parallel circuit was then found by

adding the conductance of each branch. The total resistance RT is sim-

ply 1/GT.

In ac circuits, we define admittance (Y) as being equal to 1/Z. The

unit of measure for admittance as defined by the SI system is siemens,

which has the symbol S. Admittance is a measure of how well an ac cir-

cuit will admit, or allow, current to flow in the circuit. The larger its

value, therefore, the heavier the current flow for the same applied

potential. The total admittance of a circuit can also be found by finding

the sum of the parallel admittances. The total impedance ZT of the cir-

cuit is then 1/YT; that is, for the network of Fig. 15.54:

(15.16)YT 5 Y1 1 Y2 1 Y3 1 ⋅ ⋅ ⋅ 1 YN

a c

Y1  =
1

Z1
Y2  =

1

Z2
Y3  =

1

Z3
YN  =

1

ZN

YT

ZT

FIG. 15.54
Parallel ac network.

or, since Z 5 1/Y,

(15.17)

For two impedances in parallel,

5 1

If the manipulations used in Chapter 6 to find the total resistance of two

parallel resistors are now applied, the following similar equation will

result:

(15.18)ZT 5 }
Z1

Z

1

1Z2

Z2

}

1
}
Z2

1
}
Z1

1
}
ZT

}
Z

1

T

} 5 }
Z

1

1

} 1 }
Z

1

2

} 1 }
Z

1

3

} 1 ⋅ ⋅ ⋅ 1 }
Z

1

N

}
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For three parallel impedances,

ZT 5 (15.19)

As pointed out in the introduction to this section, conductance is the

reciprocal of resistance, and

(15.20)

The reciprocal of reactance (1/X) is called susceptance and is a mea-

sure of how susceptible an element is to the passage of current through

it. Susceptance is also measured in siemens and is represented by the

capital letter B.

For the inductor,

(15.21)

Defining (siemens, S) (15.22)

we have (15.23)

Note that for inductance, an increase in frequency or inductance will

result in a decrease in susceptance or, correspondingly, in admittance.

For the capacitor,

(15.24)

Defining (siemens, S) (15.25)

we have (15.26)

For the capacitor, therefore, an increase in frequency or capacitance

will result in an increase in its susceptibility.

For parallel ac circuits, the admittance diagram is used with the

three admittances, represented as shown in Fig. 15.55.

Note in Fig. 15.55 that the conductance (like resistance) is on the

positive real axis, whereas inductive and capacitive susceptances are in

direct opposition on the imaginary axis.

For any configuration (series, parallel, series-parallel, etc.), the angle

associated with the total admittance is the angle by which the source

current leads the applied voltage. For inductive networks, vT is

negative, whereas for capacitive networks, vT is positive.

YC 5 BC /90°

BC 5 }
X

1

C

}

YC 5 }
Z

1

C

} 5 }
XC /

1

290°
} 5 }

X

1

C

} /90°

YL 5 BL /290°

BL 5 }
X

1

L

}

YL 5 }
Z

1

L

} 5 }
XL /

1

90°
} 5 }

X

1

L

} /290°

YR 5 }
Z

1

R

} 5 }
R /

1

0°
} 5 G /0°

Z1Z2Z3
}}}
Z1Z2 1 Z2Z3 1 Z1Z3

a c

j

BC ∠ 90°

BL ∠ –90°

G ∠ 0°
+

FIG. 15.55
Admittance diagram.



XC 20 V

YT

ZT

R 5 V XL 8 V

XL 10 V

YT

ZT

R 20 V
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EXAMPLE 15.12 For the network of Fig. 15.56:

a. Find the admittance of each parallel branch.

b. Determine the input admittance.

c. Calculate the input impedance.

d. Draw the admittance diagram.

Solutions:
a. YR 5 G /0° 5 /0° 5 /0°

5 0.05 S /0° 5 0.05 S 1 j 0

YL 5 BL /290° 5 /290° 5 /290°

5 0.1 S /290° 5 0 2 j 0.1 S

b. YT 5 YR 1 YL 5 (0.05 S 1 j 0) 1 (0 2 j 0.1 S)

5 0.05 S 2 j 0.1 S 5 G 2 j BL

c. ZT 5 5 5

5 8.93 V /63.43°

or Eq. (15.17):

ZT 5 5

5 5 8.93 V /63.43°

d. The admittance diagram appears in Fig. 15.57.

200 V /90°
}}
22.36 /26.57°

(20 V /0°)(10 V /90°)
}}}

20 V 1 j 10 V

ZRZL
}
ZR 1 ZL

1
}}
0.112 S /263.43°

1
}}
0.05 S 2 j 0.1 S

1
}
YT

1
}
10 V

1
}
XL

1
}
20 V

1
}
R

a c

FIG. 15.56
Example 15.12.

j

YT

+

YL  =  0.1 S ∠ – 90°

0.112 S

–63.43°

YR  =  0.05 S ∠ 0°

FIG. 15.57
Admittance diagram for the network of 

Fig. 15.56.

FIG. 15.58
Example 15.13.

EXAMPLE 15.13 Repeat Example 15.12 for the parallel network of

Fig. 15.58.

Solutions:
a. YR 5 G /0° 5 /0° 5 /0°

5 0.2 S /0° 5 0.2 S 1 j 0

1
}
5 V

1
}
R
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YL 5 BL /290° 5 /290° 5 /290°

5 0.125 S /290° 5 0 2 j 0.125 S

YC 5 BC /90° 5 /90° 5 /90°

5 0.050 S /190° 5 0 1 j 0.050 S

b. YT 5 YR 1 YL 1 YC

5 (0.2 S 1 j 0) 1 (0 2 j 0.125 S) 1 (0 1 j 0.050 S)

5 0.2 S 2 j 0.075 S 5 0.2136 S /220.56°

c. ZT 5 5 4.68 V /20.56°

or

ZT 5

5

1 (5 V /0°)(20 V /290°)

5

5 5

5

5 4.68 V /20.56°

d. The admittance diagram appears in Fig. 15.59.

On many occasions, the inverse relationship YT 5 1/ZT or ZT 5

1/YT will require that we divide the number 1 by a complex number

having a real and an imaginary part. This division, if not performed in

the polar form, requires that we multiply the numerator and denomina-

tor by the conjugate of the denominator, as follows:

YT 5 5 5 1 2 1 2 5

and YT 5 S 2 j S

To avoid this laborious task each time we want to find the reciprocal

of a complex number in rectangular form, a format can be developed

using the following complex number, which is symbolic of any imped-

ance or admittance in the first or fourth quadrant:

5 1 2 1 2 5

or (15.27)

Note that the denominator is simply the sum of the squares of each

term. The sign is inverted between the real and imaginary parts. A few

examples will develop some familiarity with the use of this equation.

}
a1 6

1

j b1

} 5 }
a2

1

a

1

1

b2
1

} 7 j }
a2

1

b

1

1

b2
1

}

a1 7 j b1
}
a2

1 1 b2
1

a1 7 j b1
}
a1 7 j b1

1
}
a1 6 j b1

1
}
a1 6 j b1

6
}
52

4
}
52

4 2 j 6
}
42

1 62

(4 V 2 j 6 V)
}}
(4 V 2 j 6 V)

1
}}
4 V 1 j 6 V

1
}}
4 V 1 j 6 V

1
}
ZT

800 V
}}
170.88 /220.56°

800 V
}}
160 2 j 60

800 V
}}
160 1 j 40 2 j 100

800 V /0°
}}}}
40 /90° 1 160 /0° 1 100 /290°

(5 V /0°)(8 V /90°)(20 V /290°)
}}}}}}
(5 V /0°)(8 V /90°) 1 (8 V /90°)(20 V /290°)

ZRZLZC
}}}
ZRZL 1 ZLZC 1 ZRZC

1
}}}
0.2136 S /220.56°

1
}
20 V

1
}
XC

1
}
8 V

1
}
XL

a c

20.56°

YR

YC

YL –  YC

YT

0.2136 S

+

YL

j

FIG. 15.59
Admittance diagram for the network of 

Fig. 15.58.



R 6 V

XC 8 V

Y

(a)

R 10 V

XC 0.1 V

Y

(b)

XL 4 V
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a c

I

Z2E
ZT, YT

Z1

I1 I2

EXAMPLE 15.14 Find the admittance of each set of series elements

in Fig. 15.60.

FIG. 15.60
Example 15.14.

FIG. 15.61
Parallel ac network.

Solutions:
a. Z 5 R 2 j XC 5 6 V 2j 8 V

Eq. (15.27):

Y 5 5 1 j

5 S 1 j S

b. Z 5 10 V 1 j 4 V 1 (2j 0.1 V) 5 10 V 1 j 3.9 V

Eq. (15.27):

Y 5 5 5 2 j

5 2 j 5 0.087 S 2 j 0.034 S

15.8 PARALLEL ac NETWORKS
For the representative parallel ac network of Fig. 15.61, the total imped-

ance or admittance is determined as described in the previous section,

and the source current is determined by Ohm’s law as follows:

(15.28)

Since the voltage is the same across parallel elements, the current

through each branch can then be found through another application of

Ohm’s law:

(15.29a)

(15.29b)I2 5 }
Z

E

2

} 5 EY2

I1 5 }
Z

E

1

} 5 EY1

I 5 }
Z

E

T

} 5 EYT

3.9
}
115.21

10
}
115.21

3.9
}}
(10)2

1 (3.9)2

10
}}
(10)2

1 (3.9)2

1
}}
10 V 1 j 3.9 V

1
}
Z

8
}
100

6
}
100

8
}}
(6)2

1 (8)2

6
}}
(6)2

1 (8)2

1
}}
6 V 2 j 8 V
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Kirchhoff’s current law can then be applied in the same manner as

employed for dc networks. However, keep in mind that we are now

dealing with the algebraic manipulation of quantities that have both

magnitude and direction.

I 2 I1 2 I2 5 0

or (15.30)

The power to the network can be determined by

(15.31)

where vT is the phase angle between E and I.

Let us now look at a few examples carried out in great detail for the

first exposure.

R-L
Refer to Fig. 15.62.

P 5 EI cos vT

I 5 I1 1 I2

a c

YT and ZT
YT 5 YR 1 YL

5 G /0° 1 BL /290° 5 /0° 1 /290°

5 0.3 S /0° 1 0.4 S /290° 5 0.3 S 2 j 0.4 S

5 0.5 S /253.13°

ZT 5 5 5 2 V /53.13°
1

}}
0.5 S /253.13°

1
}
YT

1
}
2.5 V

1
}
3.33 V

R 3.33 V

a

iLiR

2.5 VXL

i

e  = =2(20) sin(qt +  53.13°)

+

–

FIG. 15.62
Parallel R-L network.

R 3.33 V

a

ILIR

2.5 VXL

I  =  10 A ∠ 0°

E  =  20 V ∠ 53.13°

+

–

YT

ZT

FIG. 15.63
Applying phasor notation to the network of Fig. 15.62.

Phasor Notation As shown in Fig. 15.63.
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Admittance diagram: As shown in Fig. 15.64.

a c

53.13° +

j

YT  =  0.5 S ∠ –53.13°

G ∠ 0°  =  0.3 S ∠ 0°

BL ∠ –90°  =  0.4 S ∠ –90°

I
I 5 5 EYT 5 (20 V /53.13°)(0.5 S /253.13°) 5 10 A /0°

IR and IL
IR 5 5 (E /v)(G /0°)

5 (20 V /53.13°)(0.3 S /0°) 5 6 A /53.13°

IL 5 5 (E /v)(BL /290°)

5 (20 V /53.13°)(0.4 S /290°)

5 8 A /236.87°

Kirchhoff’s current law: At node a,

I 2 IR 2 IL 5 0

or

I 5 IR 1 IL

10 A /0° 5 6 A /53.13° 1 8 A /236.87°

10 A /0° 5 (3.60 A 1 j 4.80 A) 1 (6.40 A 2 j 4.80 A) 5 10 A 1 j 0

and 10 A /0° 5 10 A /0° (checks)

Phasor diagram: The phasor diagram of Fig. 15.65 indicates that

the applied voltage E is in phase with the current IR and leads the cur-

rent IL by 90°.

Power: The total power in watts delivered to the circuit is

PT 5 EI cos vT

5 (20 V)(10 A) cos 53.13° 5 (200 W)(0.6)

5 120 W

or PT 5 I 2R 5 5 V2
RG 5 (20 V)2(0.3 S) 5 120 W

V2
R

}
R

E /v
}
XL /90°

E /v
}
R /0°

E
}
ZT

FIG. 15.64
Admittance diagram for the parallel R-L network of Fig. 15.62.

36.87° +

j

I

53.13°

IL

IR

E

FIG. 15.65
Phasor diagram for the parallel R-L network

of Fig. 15.62.
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or, finally,

PT 5 PR 1 PL 5 EIR cos vR 1 EIL cos vL

5 (20 V)(6 A) cos 0° 1 (20 V)(8 A) cos 90° 5 120 W 1 0

5 120 W

Power factor: The power factor of the circuit is

Fp 5 cos vT 5 cos 53.13° 5 0.6 lagging

or, through an analysis similar to that employed for a series ac circuit,

cos vT 5 5 5 5 5

and (15.32)

where G and YT are the magnitudes of the total conductance and admit-

tance of the parallel network. For this case,

Fp 5 cos vT 5 5 0.6 lagging

Impedance approach: The current I can also be found by first find-

ing the total impedance of the network:

ZT 5 5

5 5 2 V /53.13°

And then, using Ohm’s law, we obtain

I 5 5 5 10 A /0°

R-C
Refer to Fig. 15.66.

20 V /53.13°
}}
2 V /53.13°

E
}
ZT

8.325 /90°
}}
4.164 /36.87°

(3.33 V /0°)(2.5 V /90°)
}}}
3.33 V /0° 1 2.5 V /90°

ZRZL
}
ZR 1 ZL

0.3 S
}
0.5 S

Fp 5 cos vT 5 }
Y

G

T

}

G
}
YT

G
}
I/V

EG
}

I

E2/R
}

EI

P
}
EI

a c

R 1.67 V

a

iCiR

1.25 VXC
i  =  14.14 sin qt

+

–

e

FIG. 15.66
Parallel R-C network.

Phasor Notation As shown in Fig. 15.67.

YT and ZT

YT 5 YR 1 YC 5 G /0° 1 BC /90° 5 /0° 1 /90°

5 0.6 S /0° 1 0.8 S /90° 5 0.6 S 1 j 0.8 S 5 1.0 S /53.13°

ZT 5 5 5 1 V /253.13°
1

}}
1.0 S /53.13°

1
}
YT

1
}
1.25 V

1
}
1.67 V
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a c

IC

I

36.87°

53.13°

j

+

IR

E

Admittance diagram: As shown in Fig. 15.68.

E
E 5 IZT 5 5 5 10 V /253.13°

IR and IC
IR 5 (E /v)(G /0°)

5 (10 V /253.13°)(0.6 S /0°) 5 6 A /253.13°

IC 5 (E /v)(BC /90°)

5 (10 V /253.13°)(0.8 S /90°) 5 8 A /36.87°

Kirchhoff’s current law: At node a,

I 2 IR 2 IC 5 0

or I 5 IR 1 IC

which can also be verified (as for the R-L network) through vector

algebra.

Phasor diagram: The phasor diagram of Fig. 15.69 indicates that

E is in phase with the current through the resistor IR and lags the capac-

itive current IC by 90°.

Time domain:

e 5 Ï2w(10) sin(qt 2 53.13°) 5 14.14 sin(qt 2 53.13°)

iR 5 Ï2w(6) sin(qt 2 53.13°) 5 8.48 sin(qt 2 53.13°)

iC 5 Ï2w(8) sin(qt 1 36.87°) 5 11.31 sin(qt 1 36.87°)

10 A /0°
}}
1 S /53.13°

I
}
YT

R 1.67 V

a

ICIR

1.25 VXC
I  =  10 A ∠ 0°

+

–

E

FIG. 15.67
Applying phasor notation to the network of Fig. 15.66.

53.13°

+

j

G ∠ 0°  =  0.6 S ∠ 0°

BC ∠ 90°  =  0.8 S ∠ 90°
YT  =  1 S ∠ 53.13°

FIG. 15.68
Admittance diagram for the parallel R-C network of Fig. 15.66.

FIG. 15.69
Phasor diagram for the parallel R-C network 

of Fig. 15.66.
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A plot of all of the currents and the voltage appears in Fig. 15.70.

Note that e and iR are in phase and e lags iC by 90°.

Power:

PT 5 EI cos v 5 (10 V)(10 A) cos 53.13° 5 (10)2(0.6)

5 60 W

or PT 5 E2G 5 (10 V)2(0.6 S) 5 60 W

or, finally,

PT 5 PR 1 PC 5 EIR cos vR 1 EIC cos vC

5 (10 V)(6 A) cos 0° 1 (10 V)(8 A) cos 90°

5 60 W

Power factor: The power factor of the circuit is

Fp 5 cos 53.13° 5 0.6 leading

Using Eq. (15.32), we have

Fp 5 cos vT 5 5 5 0.6 leading

Impedance approach: The voltage E can also be found by first

finding the total impedance of the circuit:

ZT 5 5

5 5 1 V /253.19°

and then, using Ohm’s law, we find

E 5 IZT 5 (10 A /0°)(1 V /253.19°) 5 10 V /253.19°

R-L-C
Refer to Fig. 15.71.

2.09 /290°
}}
2.09 /236.81°

(1.67 V /0°)(1.25 V /290°)
}}}}
1.67 V /0° 1 1.25 V /290°

ZRZC
}
ZR 1 ZC

0.6 S
}
1.0 S

G
}
YT

90°

36.87°

iR

p0

e

p
2

– p
2 p

2
3

iC

i

14.14 A

11.31 A

8.48 A

  tvp2

FIG. 15.70
Waveforms for the parallel R-C network of Fig. 15.66.
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a c

Phasor notation: As shown in Fig. 15.72.

YT and ZT
YT 5 YR 1 YL 1 YC 5 G /0° 1 BL /290° 1 BC /90°

5 /0° 1 /290° 1 /90°

5 0.3 S /0° 1 0.7 S /290° 1 0.3 S /90°

5 0.3 S 2 j 0.7 S 1 j 0.3 S

5 0.3 S 2 j 0.4 S 5 0.5 S /253.13°

ZT 5 5 5 2 V /53.13°

Admittance diagram: As shown in Fig. 15.73.

I
I 5 5 EYT 5 (100 V /53.13°)(0.5 S /253.13°) 5 50 A /0°

IR, IL , and IC
IR 5 (E /v)(G /0°)

5 (100 V /53.13°)(0.3 S /0°) 5 30 A /53.13°

IL 5 (E /v)(BL /290°)

5 (100 V /53.13°)(0.7 S /290°) 5 70 A /236.87°

IC 5 (E /v)(BC /90°)

5 (100 V /53.13°)(0.3 S /190°) 5 30 A /143.13°

Kirchhoff’s current law: At node a,

I 2 IR 2 IL 2 IC 5 0

E
}
ZT

1
}}
0.5 S /253.13°

1
}
YT

1
}
3.33 V

1
}
1.43 V

1
}
3.33 V

R 3.33 V

a

iLiR

1.43 VXL

i =  70.7 sin qt

e  = =2(100) sin(qt +  53.13°)

+

–

iC

3.33 VXC

FIG. 15.71
Parallel R-L-C ac network.

R 3.33 V

a

ILIR

1.43 VXL

I =  50 A ∠ 0°

E  =  100 V ∠ 53.13°

+

–

IC

3.33 VXC

FIG. 15.72
Applying phasor notation to the network of Fig. 15.71.

53.13°

BC ∠ 90°  =  0.3 S ∠ 90°

+

j

G ∠ 0°  =  0.3 S ∠ 0°

BL ∠ –90°  =  0.7 S ∠ –90°

YT  =  0.5 S ∠ –53.13°

BL  – BC

FIG. 15.73
Admittance diagram for the parallel R-L-C

network of Fig. 15.71.
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90°

36.87°

iL

0

e

p
2

–
p
2

i

53.13°

90°

iR

p–

iC

  tv2pp
p

2
3

FIG. 15.75
Waveforms for the parallel R-L-C network of Fig. 15.71.

or I 5 IR 1 IL 1 IC

Phasor diagram: The phasor diagram of Fig. 15.74 indicates that

the impressed voltage E is in phase with the current IR through the

resistor, leads the current IL through the inductor by 90°, and lags the

current IC of the capacitor by 90°.

Time domain:

i 5 Ï2w(50) sin qt 5 70.70 sin qt

iR 5 Ï2w(30) sin(qt 1 53.13°) 5 42.42 sin(qt 1 53.13°)

iL 5 Ï2w(70) sin(qt 2 36.87°) 5 98.98 sin(qt 2 36.87°)

iC 5 Ï2w(30) sin(qt 1 143.13°) 5 42.42 sin(qt 1 143.13°)

A plot of all of the currents and the impressed voltage appears in

Fig. 15.75.

36.87°

53.13°

j

+

IC

I

IR

E

I
L  –  I

C

IL

FIG. 15.74
Phasor diagram for the parallel R-L-C

network of Fig. 15.71.

Power: The total power in watts delivered to the circuit is

PT 5 EI cos v 5 (100 V)(50 A) cos 53.13° 5 (5000)(0.6)

5 3000 W

or PT 5 E2G 5 (100 V)2(0.3 S) 5 3000 W

or, finally,

PT 5 PR 1 PL 1 PC

5 EIR cos vR 1 EIL cos vL 1 ELC cos vC

5 (100 V)(30 A) cos 0° 1 (100 V)(70 A) cos 90°

1 (100 V)(30 A) cos 90°

5 3000 W 1 0 1 0

5 3000 W

Power factor: The power factor of the circuit is

Fp 5 cos vT 5 cos 53.13° 5 0.6 lagging



CURRENT DIVIDER RULE  667
a c

IT  =  5 A  30°

R

1 V

XL

8 V

XC

2 V

XL 4 VV

I  =  20 A     0°
IL

R 3

IR

Using Eq. (15.32), we obtain

Fp 5 cos vT 5 5 5 0.6 lagging

Impedance approach: The input current I can also be determined

by first finding the total impedance in the following manner:

ZT 5 5 2 V /53.13°

and, applying Ohm’s law, we obtain

I 5 }
Z

E

T

} 5 5 50 A /0°

15.9 CURRENT DIVIDER RULE
The basic format for the current divider rule in ac circuits is exactly

the same as that for dc circuits; that is, for two parallel branches with

impedances Z1 and Z2 as shown in Fig. 15.76,

(15.33)

EXAMPLE 15.15 Using the current divider rule, find the current

through each impedance of Fig. 15.77.

Solution:
IR 5 5 5

5 16 A /36.87°

IL 5 5 5

5 12 A /253.13°

EXAMPLE 15.16 Using the current divider rule, find the current

through each parallel branch of Fig. 15.78.

60 A/0°
}}
5 /53.13°

(3 V /0°)(20 A /0°)
}}}

5 V /53.13°

ZRIT
}
ZR 1 ZL

80 A/90°
}}
5 /53.13°

(4 V /90°)(20 A /0°)
}}}
3 V /0° 1 4 V /90°

ZLIT
}
ZR 1 ZL

I1 5 }
Z1

Z

1
2IT

Z2

} or I2 5 }
Z1

Z

1
1IT

Z2

}

100 V /53.13°
}}

2 V /53.13°

ZRZLZC
}}}
ZRZL 1 ZLZC 1 ZRZC

0.3 S
}
0.5 S

G
}
YT

Solution:
IR-L 5 5 5

5 > 1.644 A /2140.54°
10 A/260°
}}
6.083 /80.54°

10 A/260°
}}

1 1 j 6

(2 V /290°)(5 A /30°)
}}}

2j 2 V 1 1 V 1 j 8 V

ZC IT
}}
ZC 1 ZR-L

IT

Z1

Z2

IT

I1

I2

FIG. 15.76
Applying the current divider rule.

FIG. 15.77
Example 15.15.

FIG. 15.78
Example 15.16.
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a c

IC 5 5

5 5

5 6.625 A /32.33°

15.10 FREQUENCY RESPONSE OF THEPARALLEL R-L NETWORK
In Section 15.5 the frequency response of a series R-C circuit was ana-

lyzed. Let us now note the impact of frequency on the total impedance

and inductive current for the parallel R-L network of Fig. 15.79 for a

frequency range of zero through 40 kHz.

40.30 A/112.87°
}}

6.083 /80.54°

(8.06 /82.87°)(5 A/30°)
}}}

6.08 /80.54°

(1 V 1 j 8 V)(5 A /30°)
}}}

6.08 V /80.54°

ZR-LIT
}}
ZR-L 1 ZC

ZT Before getting into specifics, let us first develop a “sense” for the

impact of frequency on the network of Fig. 15.79 by noting the imped-

ance-versus-frequency curves of the individual elements, as shown in

Fig. 15.80. The fact that the elements are now in parallel requires that

we consider their characteristics in a different manner than occurred for

the series R-C circuit of Section 15.5. Recall that for parallel elements,

the element with the smallest impedance will have the greatest impact

R 220 V L 4 mHVs

+

–

ZT
IL

I  =  100 mA ∠0°

f : 0 to 20 kHz

FIG. 15.79
Determining the frequency response of a parallel R-L network.

R 220 V L
L  =  4 mH

ZT

R

220 V

0 f

XL

0 ff2

220 Ω

XL < R XL > R

XL  =  2   fLp

FIG. 15.80
The frequency response of the individual elements of a parallel R-L network.
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a c

on the total impedance at that frequency. In Fig. 15.80, for example, XL

is very small at low frequencies compared to R, establishing XL as the

predominant factor in this frequency range. In other words, at low fre-

quencies the network will be primarily inductive, and the angle associ-

ated with the total impedance will be close to 90°, as with a pure induc-

tor. As the frequency increases, XL will increase until it equals the

impedance of the resistor (220 V). The frequency at which this situation

occurs can be determined in the following manner:

XL 5 2pf2L 5 R

and (15.34)

which for the network of Fig. 15.79 is

f 2 5 5

ù 8.75 kHz

which falls within the frequency range of interest.

For frequencies less than f2, XL < R, and for frequencies greater than

f2, XL > R, as shown in Fig. 15.80. A general equation for the total

impedance in vector form can be developed in the following manner:

ZT 5

5 5 

and ZT 5 /90° 2tan21 XL /R

so that (15.35)

and (15.36)

The magnitude and angle of the total impedance can now be found

at any frequency of interest simply by substituting Eqs. (15.35) and

(15.36).

f 5 1 kHz
XL 5 2pf L 5 2p(1 kHz)(4 3 1023 H) 5 25.12 V

and

ZT 5 5 5 24.96 V

with vT 5 tan21 5 tan21

5 tan21 8.76 5 83.49°

220 V
}
25.12 V

R
}
XL

(220 V)(25.12 V)
}}}
Ï(2w2w0w Vw)2w 1w (w2w5w.1w2w Vw)2w

RXL
}}
ÏRw2w1w Xw2

Lw

vT 5 90° 2 tan21 }
X

R

L
} 5 tan21 }

X

R

L

}

ZT 5 }
ÏRw

R

2

X

w1w
L

Xw2
Lw

}

RXL
}}
ÏRw2w1w Xw2

Lw

RXL /90°
}}}
ÏRw2w1w Xw2

Lw /tan21 XL /R

(R /0°)(XL /90°)
}}

R 1 j XL

ZRZL
}
ZR 1 ZL

220 V
}}
2p(4 3 1023 H)

R
}
2pL

f2 5 }
2p

R

L
}
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and ZT 5 24.96 V /83.49°

This value compares very closely with XL 5 25.12 V /90°, which it

would be if the network were purely inductive (R 5 ∞ V). Our assump-

tion that the network is primarily inductive at low frequencies is there-

fore confirmed.

Continuing:

f 5 5 kHz: ZT 5 109.1 V /60.23°

f 5 10 kHz: ZT 5 165.5 V /41.21°

f 5 15 kHz: ZT 5 189.99 V /30.28°

f 5 20 kHz: ZT 5 201.53 V /23.65°

f 5 30 kHz: ZT 5 211.19 V /16.27°

f 5 40 kHz: ZT 5 214.91 V /12.35°

At f 5 40 kHz, note how closely the magnitude of ZT has ap-

proached the resistance level of 220 V and how the associated angle

with the total impedance is approaching zero degrees. The result is a

network with terminal characteristics that are becoming more and more

resistive as the frequency increases, which further confirms the earlier

conclusions developed by the curves of Fig. 15.80.

Plots of ZT versus frequency in Fig. 15.81 and vT in Fig. 15.82

clearly reveal the transition from an inductive network to one that

has resistive characteristics. Note that the transition frequency of

8.75 kHz occurs right in the middle of the knee of the curves for

both ZT and vT.

ZT (v)

Network inductive

XL < R (ZT ≅ XL)

100

200

R  =  220 V

ZT (V)

0 1 5 10 20 30 40 f (kHz)

XL > R (ZT ≅ R)

Network resistive

XL  = R

8.75

FIG. 15.81
The magnitude of the input impedance versus frequency for the network of 

Fig. 15.79.

A review of Figs. 15.47 and 15.81 will reveal that a series R-C and

a parallel R-L network will have an impedance level that approaches

the resistance of the network at high frequencies. The capacitive cir-

cuit approaches the level from above, whereas the inductive network

does the same from below. For the series R-L circuit and the parallel

R-C network, the total impedance will begin at the resistance level and

then display the characteristics of the reactive elements at high fre-

quencies.
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IL Applying the current divider rule to the network of Fig. 15.79 will

result in the following:

IL 5

5 5

and IL 5 IL /vL 5 /2tan21 XL /R

The magnitude of IL is therefore determined by

(15.37)

and the phase angle vL, by which IL leads I, is given by

(15.38)

Because vL is always negative, the magnitude of vL is, in actuality,

the angle by which IL lags I.

To begin our analysis, let us first consider the case of f 5 0 Hz (dc

conditions).

f 5 0 Hz
XL 5 2pfL 5 2p(0 Hz)L 5 0 V

Applying the short-circuit equivalent for the inductor in Fig. 15.79

would result in

IL 5 I 5 100 mA /0°

vL 5 2tan21 }
X

R

L
}

IL 5 }
ÏRw

R

2w
I

1w Xw2
Lw

}

RI
}}
ÏRw2w1w Xw2

Lw

RI /0°
}}}
ÏRw2w1w Xw2

Lw /tan21 XL /R

(R /0°)(I /0°)
}}

R 1 j XL

ZRI
}
ZR 1 ZL

5 f (kHz)1 10 20 30 40

0°

30°

45°

60°

90°

Inductive (XL < R)

Resistive (XL > R)

  Tθ

  T ( f )θ

FIG. 15.82
The phase angle of the input impedance versus frequency for the network of

Fig. 15.79.
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as appearing in Figs. 15.83 and 15.84.

f 5 1 kHz Applying Eq. (15.37):

XL 5 2pfL 5 2p(1 kHz)(4 mH) 5 25.12 V

and ÏRw2w1w Xw2
Lw 5 Ï(2w2w0w Vw)2w 1w (w2w5w.1w2w Vw)2w 5 221.43 V

and IL 5 5 5 99.35 mA

with

vL 5 tan21 5 2tan21 5 2tan21 0.114 5 26.51°

and IL 5 99.35 mA /26.51°

The result is a current IL that is still very close to the source current I

in both magnitude and phase.

Continuing:

f 5 5 kHz: IL 5 86.84 mA /229.72°
f 5 10 kHz: IL 5 65.88 mA /248.79°
f 5 15 kHz: IL 5 50.43 mA /259.72°
f 5 20 kHz: IL 5 40.11 mA /266.35°
f 5 30 kHz: IL 5 28.02 mA /273.73°
f 5 40 kHz: IL 5 21.38 mA /277.65°

The plot of the magnitude of IL versus frequency is provided in Fig.

15.83 and reveals that the current through the coil dropped from its

maximum of 100 mA to almost 20 mA at 40 kHz. As the reactance of

the coil increased with frequency, more of the source current chose the

25.12 V
}
220 V

XL
}
R

(220 V)(100 mA)
}}

221.43 V

RI
}}
ÏRw2w1w Xw2

Lw

FIG. 15.83
The magnitude of the current IL versus frequency for the parallel R-L network

of Fig. 15.79.

IL (mA)

5 f (kHz)1 10 20 30 400

25

Network inductive

IL ( f )

50

75

100

XL < R (IL ≅ Is)

Network resistive

XL > R (IL  => 0 mA)
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FIG. 15.84
The phase angle of the current IL versus frequency for the parallel R-L network

of Fig. 15.79.

Network inductive

5 10 20 30 40 f (kHz)0°

–30°

–45°

–60°

–90°

Network resistive

  L ( f )θ

  L of ILθ

  L  =   sθ θ

  R ≅   s ≅  0°θ θ

83.49°

Vs

IR

IL

I

–6.51°

12.35° Vs
IR

I
–77.65°IL

FIG. 15.85
The phasor diagram for the parallel R-L net-

work of Fig. 15.79 at f 5 1 kHz.

FIG. 15.86
The phasor diagram for the parallel R-L net-

work of Fig. 15.79 at f 5 40 kHz.

lower-resistance path of the resistor. The magnitude of the phase angle

between IL and I is approaching 90° with an increase in frequency, as

shown in Fig. 15.84, leaving its initial value of zero degrees at f 5 0 Hz

far behind.

At f 5 1 kHz, the phasor diagram of the network appears as shown

in Fig. 15.85. First note that the magnitude and the phase angle of IL are

very close to those of I. Since the voltage across a coil must lead the

current through a coil by 90°, the voltage Vs appears as shown. The

voltage across a resistor is in phase with the current through the resis-

tor, resulting in the direction of IR shown in Fig. 15.85. Of course, at

this frequency R > XL, and the current IR is relatively small in magni-

tude.

At f 5 40 kHz, the phasor diagram changes to that appearing in Fig.

15.86. Note that now IR and I are close in magnitude and phase because

XL > R. The magnitude of IL has dropped to very low levels, and the

phase angle associated with IL is approaching 290°. The network is

now more “resistive” compared to its “inductive” characteristics at low

frequencies.

The analysis of a parallel R-C or R-L-C network would proceed in

much the same manner, with the inductive impedance predominating at

low frequencies and the capacitive reactance predominating at high fre-

quencies.

15.11 SUMMARY: PARALLEL ac NETWORKS
The following is a review of important conclusions that can be derived

from the discussion and examples of the previous sections. The list is

not all-inclusive, but it does emphasize some of the conclusions that

should be carried forward in the future analysis of ac systems.
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For parallel ac networks with reactive elements:

1. The total admittance (impedance) will be frequency

dependent.

2. The impedance of any one element can be less than the total

impedance (recall that for dc circuits the total resistance must

always be less than the smallest parallel resistor).

3. The inductive and capacitive susceptances are in direct

opposition on an admittance diagram.

4. Depending on the frequency applied, the same network can be

either predominantly inductive or predominantly capacitive.

5. At lower frequencies the inductive elements will usually have

the most impact on the total impedance, while at high

frequencies the capacitive elements will usually have the most

impact.

6. The magnitude of the current through any one branch can be

greater than the source current.

7. The magnitude of the current through an element, compared

to the other elements of the network, is directly related to the

magnitude of its impedance; that is, the smaller the impedance

of an element, the larger the magnitude of the current through

the element.

8. The current through a coil is always in direct opposition with

the current through a capacitor on a phasor diagram.

9. The applied voltage is always in phase with the current

through the resistive elements, leads the voltage across all the

inductive elements by 90°, and lags the current through all

capacitive elements by 90°.

10. The smaller the resistive element of a network compared to the

net reactive susceptance, the closer the power factor is to

unity.

15.12 EQUIVALENT CIRCUITS
In a series ac circuit, the total impedance of two or more elements in

series is often equivalent to an impedance that can be achieved with

fewer elements of different values, the elements and their values being

determined by the frequency applied. This is also true for parallel cir-

cuits. For the circuit of Fig. 15.87(a),

ZT 5 5 5

5 10 V /290°

50 /0°
}
5 /90°

(5 V /290°)(10 V /90°)
}}}
5 V /290° 1 10 V /90°

ZCZL
}
ZC 1 ZL

5 VXC
ZT 10 VXL

(a)

10 VXC
ZT

(b)

FIG. 15.87
Defining the equivalence between two networks at a specific frequency.



EQUIVALENT CIRCUITS  675
a c

Rs

Zs = Zp

Ys = Yp

Xs

(b)

(a)

Rp
Zp

Yp

XP

The total impedance at the frequency applied is equivalent to a capaci-

tor with a reactance of 10 V, as shown in Fig. 15.87(b). Always keep in

mind that this equivalence is true only at the applied frequency. If the

frequency changes, the reactance of each element changes, and the

equivalent circuit will change—perhaps from capacitive to inductive in

the above example.

Another interesting development appears if the impedance of a par-

allel circuit, such as the one of Fig. 15.88(a), is found in rectangular

form. In this case,

ZT 5 5

5 5 2.40 V /36.87°

5 1.920 V 1 j 1.440 V

which is the impedance of a series circuit with a resistor of 1.92 V and

an inductive reactance of 1.44 V, as shown in Fig. 15.88(b).

The current I will be the same in each circuit of Fig. 15.87 or Fig.

15.88 if the same input voltage E is applied. For a parallel circuit of one

resistive element and one reactive element, the series circuit with the

same input impedance will always be composed of one resistive and

one reactive element. The impedance of each element of the series cir-

cuit will be different from that of the parallel circuit, but the reactive

elements will always be of the same type; that is, an R-L circuit and an

R-C parallel circuit will have an equivalent R-L and R-C series circuit,

respectively. The same is true when converting from a series to a paral-

lel circuit. In the discussion to follow, keep in mind that

the term equivalent refers only to the fact that for the same applied

potential, the same impedance and input current will result.

To formulate the equivalence between the series and parallel circuits,

the equivalent series circuit for a resistor and reactance in parallel can

be found by determining the total impedance of the circuit in rectangu-

lar form; that is, for the circuit of Fig. 15.89(a),

Yp 5 1 5 7 j

and

Zp 5 5

5 6 j

Multiplying the numerator and denominator of each term by R2
pX

2
p

results in

Zp 5 6 j

5 Rs 6 j Xs [Fig. 15.89(b)]

and (15.39)Rs 5 }
X

R
2
p

p

1

X

R

2
p

2
p

}

R2
pXp

}
X2

p 1 R2
p

RpX
2
p

}
X2

p 1 R2
p

1/Xp
}}
(1/Rp)

2 1 (1/Xp)
2

1/Rp
}}
(1/Rp)

2 1 (1/Xp)
2

1
}}
(1/Rp) 7 j (1/Xp)

1
}
Yp

1
}
Xp

1
}
RP

1
}
6j Xp

1
}
Rp

12 /90°
}}
5 /53.13°

(4 V /90°)(3 V /0°)
}}}
4 V /90° 1 3 V /0°

ZLZR
}
ZL 1 ZR

4 V R 3 VXL

I

ZT

E

+

–

(a)

XL  =  1.44 VI

ZT

E

+

–

(b)

R  =  1.92 V

FIG. 15.88
Finding the series equivalent circuit 

for a parallel R-L network.

FIG. 15.89
Defining the parameters of equivalent series

and parallel networks.
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with (15.40)

For the network of Fig. 15.88,

Rs 5 5 5 5 1.920 V

and

Xs 5 5 5 5 1.440 V

which agrees with the previous result.

The equivalent parallel circuit for a circuit with a resistor and reac-

tance in series can be found by simply finding the total admittance of

the system in rectangular form; that is, for the circuit of Fig. 15.89(b),

Zs 5 Rs 6 j Xs

Ys 5 5 5 7 j

5 Gp 7 j Bp 5 7 j [Fig. 15.89(a)]

or (15.41)

with (15.42)

For the above example,

Rp 5 5 5 5 3.0 V

and Xp 5 5 5 4.0 V

as shown in Fig. 15.88(a).

EXAMPLE 15.17 Determine the series equivalent circuit for the net-

work of Fig. 15.90.

5.76 V
}

1.44

R2
s 1 X2

s
}

Xs

5.76 V
}

1.92

(1.92 V)2 1 (1.44 V)2

}}}
1.92 V

R2
s 1 X2

s
}

Rs

Xp 5 }
R2

s

X

1

s

X2
s

}

Rp 5 }
R2

s

R

1

s

X2
s

}

1
}
Xp

1
}
Rp

Xs
}
R2

s 1 X2
s

Rs
}
R2

s 1 X2
s

1
}
Rs 6 j Xs

1
}
Zs

36 V
}

25

(3 V)2(4 V)
}}
(4 V)2 1 (3 V)2

R2
p Xp

}
X2

p 1 R2
p

48 V
}

25

(3 V)(4 V)2

}}
(4 V)2 1 (3 V)2

RpX
2
p

}
X2

p 1 R2
p

Xs 5 }
X2

p

R

1

2
pX

R

p

2
p

}

4 kV

R 8 kV

XC

9 kVXL

Rp

Xp

FIG. 15.90
Example 15.17.



EQUIVALENT CIRCUITS  677
a c

Solution:
Rp 5 8 kV

Xp (resultant) 5 XL 2 XC 5 9 kV 2 4 kV
5 5 kV

and

Rs 5 5 5 5 2.247 kV

with

Xs 5 5 5

5 3.596 kV (inductive)

The equivalent series circuit appears in Fig. 15.91.

EXAMPLE 15.18 For the network of Fig. 15.92:

320 kV
}

89

(8 kV)2(5 kV)
}}
(5 kV)2 1 (8 kV)2

R2
p Xp

}
X2

p 1 R2
p

200 kV
}

89

(8 kV)(5 kV)2

}}
(5 kV)2 1 (8 kV)2

RpX2
p

}
X2

p 1 R2
p

3.596 kV2.247 kV

XsRs

FIG. 15.91
The equivalent series circuit for the parallel

network of Fig. 15.90.

R1 10 V R2 40 V L1 6 mH L2 12 mH
C1

80 mF
C2

20 mF

iL

i  = =2 (12) sin 1000t

+

YT

ei

–

ZT

FIG. 15.92
Example 15.18.

a. Determine YT.

b. Sketch the admittance diagram.

c. Find E and IL.

d. Compute the power factor of the network and the power delivered to

the network.

e. Determine the equivalent series circuit as far as the terminal charac-

teristics of the network are concerned.

f. Using the equivalent circuit developed in part (e), calculate E, and

compare it with the result of part (c).

g. Determine the power delivered to the network, and compare it with

the solution of part (d).

h. Determine the equivalent parallel network from the equivalent series

circuit, and calculate the total admittance YT. Compare the result

with the solution of part (a).

Solutions:
a. Combining common elements and finding the reactance of the

inductor and capacitor, we obtain

RT 5 10 V \ 40 V 5 8 V

LT 5 6 mH \ 12 mH 5 4 mH

CT 5 80 mF 1 20 mF 5 100 mF
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XL 5 qL 5 (1000 rad/s)(4 mH) 5 4 V

XC 5 5 5 10 V

The network is redrawn in Fig. 15.93 with phasor notation. The total

admittance is

YT 5 YR 1 YL 1 YC

5 G /0° 1 BL /290° 1 BC /190°

5 /0° 1 /290° 1 /190°

5 0.125 S /0° 1 0.25 S /290° 1 0.1 S /190°

5 0.125 S 2 j 0.25 S 1 j 0.1 S

5 0.125 S 2 j 0.15 S 5 0.195 S /250.194°

1
}
10 V

1
}
4 V

1
}
8 V

1
}}
(1000 rad/s)(100 mF)

1
}
qC

b. See Fig. 15.94.

c. E 5 IZT 5 5 5 61.538 V /50.194°

IL 5 5 5 5 15.385 A /239.81°

d. Fp 5 cos v 5 5 5 0.641 lagging (E leads I)

P 5 EI cos v 5 (61.538 V)(12 A) cos 50.194°

5 472.75 W

e. ZT 5 5 5 5.128 V /150.194°

5 3.283 V 1 j 3.939 V

5 R 1 j XL

XL 5 3.939 V 5 qL

L 5 5 5 3.939 mH

The series equivalent circuit appears in Fig. 15.95.

f. E 5 IZT 5 (12 A /0°)(5.128 V /50.194°)

5 61.536 V /50.194° (as above)

g. P 5 I2R 5 (12 A)2 (3.283 V) 5 472.75 W (as above)

h. Rp 5 5 5 8 V
(3.283 V)2 1 (3.939 V)2

}}}
3.283 V

R2
s 1 X2

s
}

Rs

3.939 V
}}
1000 rad/s

3.939 V
}

q

1
}}}
0.195 S /250.194°

1
}
YT

0.125 S
}
0.195 S

G
}
YT

61.538 V /50.194°
}}}

4 V /90°

E
}
ZL

VL
}
ZL

12 A /0°
}}}
0.195 S /250.194°

I
}
YT

R 8 V 4 VXL XC
10 V

YT

IL

+

–

EI  =  12 A ∠ 0°

FIG. 15.93
Applying phasor notation to the network of Fig. 15.92.

G ∠ 0°

–50.194°

0.195 S

YT

BL ∠ –90°

BL – BC

BC ∠ 90°

j

+–

FIG. 15.94
Admittance diagram for the parallel R-L-C

network of Fig. 15.92.
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Xp 5 5 5 6.675 V

The parallel equivalent circuit appears in Fig. 15.96.

(3.283 V)2 1 (3.939 V)2

}}}
3.939 V

R2
s 1 X2

s
}

Xs

YT 5 G /0° 1 BL /290° 5 /0° 1 /290°

5 0.125 S /0° 1 0.15 S /290°

5 0.125 S 2 j 0.15 S 5 0.195 S /250.194° (as above)

15.13 PHASE MEASUREMENTS(DUAL-TRACE OSCILLOSCOPE)
The phase shift between the voltages of a network or between the volt-

ages and currents of a network can be found using a dual-trace (two sig-

nals displayed at the same time) oscilloscope. Phase-shift measure-

ments can also be performed using a single-trace oscilloscope by

properly interpreting the resulting Lissajous patterns obtained on the

screen. This latter approach, however, will be left for the laboratory

experience.

In Fig. 15.97, channel 1 of the dual-trace oscilloscope is hooked up

to display the applied voltage e. Channel 2 is connected to display the

voltage across the inductor vL. Of particular importance is the fact that

the ground of the scope is connected to the ground of the oscilloscope

for both channels. In other words, there is only one common ground for

the circuit and oscilloscope. The resulting waveforms may appear as

shown in Fig. 15.98.

1
}
6.675 V

1
}
8 V

FIG. 15.95
Series equivalent circuit for the parallel R-L-C network of Fig. 15.92 with 

q 5 1000 rad/s.

L

R

3.283 V

3.939 mHE

+

–

I  =  12 A ∠ 0°

LR 8 V 6.675 VI  =  12 A ∠ 0°

YT

FIG. 15.96
Parallel equivalent of the circuit of Fig. 15.95.
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R

Le

+

–

vL

+

–

21

Oscilloscope

FIG. 15.97
Determining the phase relationship between e and vL.

v

θ
1.6 div.

e

T  =  8 div.

FIG. 15.98
Determining the phase angle between e and vL.

For the chosen horizontal sensitivity, each waveform of Fig. 15.98

has a period T defined by eight horizontal divisions, and the phase angle

between the two waveforms is defined by 1}
1

2
} divisions. Using the fact

that each period of a sinusoidal waveform encompasses 360°, the fol-

lowing ratios can be set up to determine the phase angle v:

}
8

36

d

0

iv

°

.
} 5 }

1.6

v

div.
}

and v 5 1 2360° 5 72°

In general,

(15.43)

If the phase relationship between e and vR is required, the oscillo-

scope must not be hooked up as shown in Fig. 15.99. Points a and b

have a common ground that will establish a zero-volt drop between the

two points; this drop will have the same effect as a short-circuit con-

nection between a and b. The resulting short circuit will “short out” the

inductive element, and the current will increase due to the drop in

impedance for the circuit. A dangerous situation can arise if the induc-

tive element has a high impedance and the resistor has a relatively low

v 5 }
(

(

d

d

i

i

v

v

.

.

f

f

o

o

r

r

T

v)

)
} 3 360°

1.6
}
8
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impedance. The current, controlled solely by the resistance R, could

jump to dangerous levels and damage the equipment.

The phase relationship between e and vR can be determined by sim-

ply interchanging the positions of the coil and resistor or by introduc-

ing a sensing resistor, as shown in Fig. 15.100. A sensing resistor is

exactly that: introduced to “sense” a quantity without adversely affect-

ing the behavior of the network. In other words, the sensing resistor

must be small enough compared to the other impedances of the network

not to cause a significant change in the voltage and current levels or

phase relationships. Note that the sensing resistor is introduced in a way

that will result in one end being connected to the common ground of the

network. In Fig. 15.100, channel 2 will display the voltage vRs
, which is

in phase with the current i. However, the current i is also in phase with

the voltage vR across the resistor R. The net result is that the voltages

vRs
and vR are in phase and the phase relationship between e and vR can

be determined from the waveforms e and vRs
. Since vRs

and i are in

phase, the above procedure will also determine the phase angle between

the applied voltage e and the source current i. If the magnitude of Rs is

sufficiently small compared to R or XL, the phase measurements of Fig.

15.97 can be performed with Rs in place. That is, channel 2 can be con-

nected to the top of the inductor and to ground, and the effect of Rs can

be ignored. In the above application, the sensing resistor will not reveal

the magnitude of the voltage vR but simply the phase relationship

between e and vR.

R

Le

+

–

21

vR
–+

Oscilloscope

a

b

FIG. 15.99
An improper phase-measurement connection.

R

L

e

+

–

21

vR
–+

vRs

+

–

Rs

i

i

Oscilloscope

FIG. 15.100
Determining the phase relationship between e and vR or e and i using a sensing

resistor.
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For the parallel network of Fig. 15.101, the phase relationship

between two of the branch currents, iR and iL, can be determined using

a sensing resistor, as shown in the figure. Channel 1 will display the

voltage vR, and channel 2 will display the voltage vRs
. Since vR is in

phase with iR, and vRs
is in phase with the current iL, the phase rela-

tionship between vR and vRs
will be the same as that between iR and iL.

In this case, the magnitudes of the current levels can be determined

using Ohm’s law and the resistance levels R and Rs, respectively.

FIG. 15.101
Determining the phase relationship between iR and iL.

L

e

+

–

21

iR
iL

vRs
Rs

+

–

vR

+

–
R C

Oscilloscope

e

+

–

2

1

is

vRs
+–

R

isRs

FIG. 15.102
Determining the phase relationship between e 

and is.

If the phase relationship between e and is of Fig. 15.101 is required,

a sensing resistor can be employed, as shown in Fig. 15.102.

In general, therefore, for dual-trace measurements of phase relation-

ships, be particularly careful of the grounding arrangement, and fully

utilize the in-phase relationship between the voltage and current of a

resistor.

15.14 APPLICATIONS
Home Wiring
An expanded view of house wiring is provided in Fig. 15.103 to permit

a discussion of the entire system. The house panel has been included

with the “feed” and the important grounding mechanism. In addition, a
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number of typical circuits found in the home have been included to pro-

vide a sense for the manner in which the total power is distributed.

First note how the copper bars in the panel are laid out to provide

both 120 V and 208 V. Between any one bar and ground is the single-

phase 120-V supply. However, the bars have been arranged so that

208 V can be obtained between two vertical adjacent bars using a

double-gang circuit breaker. When time permits, examine your own

panel (but do not remove the cover), and note the dual circuit breaker

arrangement for the 208-V supply.

For appliances such as fixtures and heaters that have a metal casing,

the ground wire is connected to the metal casing to provide a direct path

to ground path for a “shorting” or errant current as described in Section

7.7. For outlets and such that do not have a conductive casing, the

ground lead is connected to a point on the outlet that distributes to all

important points of the outlet.

Note the series arrangement between the thermostat and the heater

but the parallel arrangement between heaters on the same circuit. In

addition, note the series connection of switches to lights in the upper-

right corner but the parallel connection of lights and outlets. Due to

high current demand the air conditioner, heaters, and electric stove have

30-A breakers. Keep in mind that the total current does not equal the

product of the two (or 60 A) since each breaker is in a line and the same

current will flow through each breaker.

In general, you now have a surface understanding of the general

wiring in your home. You may not be a qualified, licensed electrician,

Neutral Line 1 Line 2

Main
breaker
200 A Copper bus-bars

Lighting Series switches20 A

40 A

40 A

30 A

30 A

15 A

15 A

30 A

30 A

30 A

30 A

#14

#14

#10

#10

#10

#10

Parallel
lamps

120 V

+

–

120 V
+

–

Washing
machine

400 W

Electric dryer

4.8 kW

208 V
+

–

208 V
+

–
Thermostat

2′ section 4′ section 8′ section

2300 W

Parallel electric
baseboard heaters

Neutral bus-bar

Ground bus bar

MAIN PANEL

#12

#8

#8

#10

#10

Switched outlets Parallel outlets

12.2-kW
electric range

Air conditioner

860 W

208 V
+

–

208 V
+

–

120
V

+

–
60 W 40 W 60 W60 W

575 W 1150 W

FIG. 15.103
Home wiring diagram.
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but at least you should now be able to converse with some intelligence

about the system.

Speaker Systems
The best reproduction of sound is obtained using a different speaker for

the low-, mid-, and high-frequency regions. Although the typical audio

range for the human ear is from about 100 Hz to 20 kHz, speakers are

available from 20 Hz to 40 kHz. For the low-frequency range usually

extending from about 20 Hz to 300 Hz, a speaker referred to as a

woofer is used. Of the three speakers, it is normally the largest. The

mid-range speaker is typically smaller in size and covers the range from

about 100 Hz to 5 kHz. The tweeter, as it is normally called, is usually

the smallest of the three speakers and typically covers the range from

about 2 kHz to 25 kHz. There is an overlap of frequencies to ensure that

frequencies aren’t lost in those regions where the response of one drops

off and the other takes over. A great deal more about the range of each

speaker and their dB response (a term you may have heard when dis-

cussing speaker response) will be covered in detail in Chapter 23.

One popular method for hooking up the three speakers is the cross-

over configuration of Fig. 15.104. Note that it is nothing more than a

parallel network with a speaker in each branch and full applied voltage

across each branch. The added elements (inductors and capacitors)

were carefully chosen to set the range of response for each speaker.

Note that each speaker is labeled with an impedance level and associ-

ated frequency. This type of information is typical when purchasing a

quality speaker. It immediately identifies the type of speaker and reveals

at which frequency it will have its maximum response. A detailed

analysis of the same network will be included in Section 23.15. For

now, however, it should prove interesting to determine the total imped-

ance of each branch at specific frequencies to see if indeed the response

of one will far outweigh the response of the other two. Since an ampli-

fier with an output impedance of 8 V is to be employed, maximum

8 V

Llow = 3.3 mH

Vi

+

–

8 V

8 V

Cmid = 47   Fm Lmid = 270   Hm

Chigh = 3.9   Fm

Woofer

Tweeter

Midrange

FIG. 15.104
Crossover speaker system.
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transfer of power (see Section 18.5 for ac networks) to the speaker will

result when the impedance of the branch is equal to or very close to 8 V.

Let us begin by examining the response of the frequencies to be car-

ried primarily by the mid-range speaker since it represents the greatest

portion of the human hearing range. Since the mid-range speaker

branch is rated at 8 V at 1.4 kHz, let us test the effect of applying 1.4 kHz

to all branches of the crossover network.

For the mid-range speaker:

XC 5 }
2p

1

fC
} 5 5 2.42 V

XL 5 2pfL 5 2p(1.4 kHz)(270 mH) 5 2.78 V

R 5 8 V

and Zmid-range 5 R 1 j (XL 2 XC) 5 8 V 1 j (2.78 V 2 2.42 V)

5 8 V 1 j 0.36 V

5 8.008 V /22.58° > 8 V /0° 5 R

In Fig. 15.105(a), the amplifier with the output impedance of 8 V

has been applied across the mid-range speaker at a frequency of

1.4 kHz. Since the total reactance offered by the two series reactive ele-

ments is so small compared to the 8-V resistance of the speaker, we can

essentially replace the series combination of the coil and capacitor by a

short circuit of 0 V. We are then left with a situation where the load

impedance is an exact match with the output impedance of the ampli-

fier, and maximum power will be delivered to the speaker. Because of

the equal series impedances, each will capture half the applied voltage

or 6 V. The power to the speaker is then V2/R 5 (6 V)2/8 V 5 4.5 W.

At a frequency of 1.4 kHz we would expect the woofer and tweeter

to have minimum impact on the generated sound. We will now test the

validity of this statement by determining the impedance of each branch

at 1.4 kHz.

For the woofer:

XL 5 2pfL 5 2p(1.4 kHz)(3.3 mH) 5 29.03 V

and Zwoofer 5 R 1 j XL 5 8 V 1 j 29.03 V

5 30.11 V /74.59°

which is a poor match with the output impedance of the amplifier. The

resulting network is shown in Fig. 15.105(b).

The total load on the source of 12 V is

ZT 5 8 V 1 8 V 1 j 29.03 V 5 16 V 1 j 29.03 V

5 33.15 V /61.14°

and the current is

I 5 5

5 362 mA /261.14°

The power to the 8-V speaker is then

Pwoofer 5 I2R 5 (362 mA)28 V 5 1.048 W

or about 1 W.

Consequently, the sound generated by the mid-range speaker will far

outweigh the response of the woofer (as it should).

12 V /0°
}}
33.15 V /61.14°

E
}
ZT

1
}}}
2p(1.4 kHz)(47 mF)
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For the tweeter:

XC 5 5 5 29.15 V

and Ztweeter 5 R 2 j XC 5 8 V 2 j 29.15 V

5 30.23 V /274.65°

which, as for the woofer, is a poor match with the output impedance of

the amplifier. The current

I 5 5

5 397 mA /74.65°

The power to the 8-V speaker is then

Ptweeter 5 I2R 5 (397 mA)2(8 V) 5 1.261 W

or about 1.3 W.

12 V /0°
}}}
30.23 V /274.65°

E
}
ZT

1
}}}
2p(1.4 kHz)(3.9 mF)

1
}
2pfC

8 V

8 V
2.42 V 2.38 V

Midrange

XL

+

–

Vspeaker

= 6 V

Amplifier

+

–

12 V

(a)

(–jXC + jXL = –j 0.04 V)

XC

8 V

8 V
29.03 V

Woofer

XL

Ispeaker

= 362 mA

Amplifier

+

–

12 V

(b)

8 V

8 V
29.15 V

Tweeter

Amplifier

+

–

12 V

(c)

XC

ZT

Zwoofer

Ztweeter

Ispeaker

= 397 mA

ZT

Zmidrange

FIG. 15.105
Crossover network: (a) mid-range speaker at 1.4 kHz; (b) woofer at 1.4 kHz;

(c) tweeter.
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Consequently, the sound generated by the mid-range speaker will far

outweigh the response of the tweeter also.

All in all, the mid-range speaker predominates at a frequency of

1.4 kHz for the crossover network of Fig. 15.104.

Just for interest sake, let us now determine the impedance of the

tweeter at 20 kHz and the impact of the woofer at this frequency.

For the tweeter:

XC 5 5 5 2.04 V

with Ztweeter 5 8 V 2 j 2.04 V 5 8.26 V /214.31°

Even though the magnitude of the impedance of the branch is not

exactly 8 V, it is very close, and the speaker will receive a high level of

power (actually 4.43 W).

For the woofer:

XL 5 2pf L 5 2p(20 kHz)(3.3 mH) 5 414.69 V

with Zwoofer 5 8 V 2 j 414.69 V 5 414.77 V /88.9°

which is a terrible match with the output impedance of the amplifier.

Therefore, the speaker will receive a very low level of power (6.69 mW >
0.007 W).

For all the calculations, note that the capacitive elements predomi-

nate at low frequencies, and the inductive elements at high frequen-

cies. For the low frequencies, the reactance of the coil will be quite

small, permitting a full transfer of power to the speaker. For the high-

frequency tweeter, the reactance of the capacitor is quite small, pro-

viding a direct path for power flow to the speaker.

Phase-Shift Power Control
In Chapter 12 the internal structure of a light dimmer was examined and

its basic operation described. We can now turn our attention to how the

power flow to the bulb is controlled.

If the dimmer were composed of simply resistive elements, all the

voltages of the network would be in phase as shown in Fig. 15.106(a).

If we assume that 20 V are required to turn on the triac of Fig. 12.49,

then the power will be distributed to the bulb for the period highlighted

by the blue area of Fig. 15.106(a). For this situation, the bulb is close to

full brightness since the applied voltage is available to the bulb for

almost the entire cycle. To reduce the power to the bulb (and therefore

reduce its brightness), the controlling voltage would have to have a

lower peak voltage as shown in Fig. 15.106(b). In fact, the waveform of

Fig. 15.106(b) is such that the turn-on voltage is not reached until the

peak value occurs. In this case power is delivered to the bulb for only

half the cycle, and the brightness of the bulb will be reduced. The prob-

lem with using only resistive elements in a dimmer now becomes

apparent: The bulb can be made no dimmer than the situation depicted

by Fig. 15.106(b). Any further reduction in the controlling voltage

would reduce its peak value below the trigger level, and the bulb would

never turn on.

This dilemma can be resolved by using a series combination of ele-

ments such as shown in Fig. 15.107(a) from the dimmer of Fig. 12.49.

Note that the controlling voltage is the voltage across the capacitor,

1
}}}
2p(20 kHz)(3.9 mF)

1
}
2pfC

170

20

0

V (volts)

t

Applied
voltage

(b)

Controlling
voltage

(a)

170

20

0

V (volts)

t

Applied
voltage

Lamp
voltage

FIG. 15.106
Light dimmer: (a) with purely resistive

elements; (b) half-cycle power distribution.
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while the full line voltage of 120 V rms, 170 V peak, is across the entire

branch. To describe the behavior of the network, let us examine the case

defined by setting the potentiometer (used as a rheostat) to 1/10 its

maximum value, or 33 kV. Combining the 33 kV with the fixed resis-

tance of 47 kV will result in a total resistance of 80 kV and the equiv-

alent network of Fig. 15.107(b).

At 60 Hz, the reactance of the capacitor is

XC 5 }
2p

1

fC
} 5 5 42.78 kV

Applying the voltage divider rule:

Vcontrol 5 }
ZR

Z

1

CV

Z

s

C

}

5 5

5 0.472Vs /261.86°

Using a peak value of 170 V:

Vcontrol 5 0.472(170 V) /261.86°

5 80.24 V /261.86°

producing the waveform of Fig. 15.108(a). The result is a waveform

with a phase shift of 61.86° (lagging the applied line voltage) and a rel-

atively high peak value. The high peak value will result in a quick tran-

sition to the 20-V turn-on level, and power will be distributed to the

bulb for the major portion of the applied signal. Recall from the dis-

cussion of Chapter 12 that the response in the negative region is a

replica of that achieved in the positive region. If we reduced the poten-

tiometer resistance further, the phase angle would be reduced, and the

bulb would burn brighter. The situation is now very similar to that

described for the response of Fig. 15.106(a). In other words, nothing

has been gained thus far by using the capacitive element in the control

network. However, let us now increase the potentiometer resistance to

200 kV and note the effect on the controlling voltage.

42.78 kV Vs /290°
}}}
90.72 kV /228.14°

(42.78 kV /290°)(Vs /0°)
}}}

80 kV 2 j 42.78 kV

1
}}
2p(60 Hz)(62 mF)

+

–

G

K

A

TRIACDIAC

0.068 µFVcontrol

330-kV
rheostat

47 kV

+

–

Vline = 170 V ∠0°
(peak)

(a)

+

–

170 V ∠0°

0.068 µFC

(b)

Vcontrol

+

–

80 kVR

FIG. 15.107
Light dimmer: (a) from Fig. 12.49; (b) with rheostat set at 33 kV.
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That is,

RT 5 200 kV 1 47 kV 5 247 kV

Vcontrol 5 }
ZR

Z

1

CV

Z

s

C

}

5 5

5 0.171Vs /280.2°

and using a peak value of 170 V, we have

Vcontrol 5 0.171(170 V) /280.2°

5 29.07 V /280.2°

The peak value has been substantially reduced to only 29.07 V, and the

phase-shift angle has increased to 80.2°. The result, as depicted by Fig.

15.108(b), is that the firing potential of 20 V is not reached until near

the end of the positive region of the applied voltage. Power is delivered

to the bulb for only a very short period of time, causing the bulb to be

quite dim, significantly dimmer than obtained from the response of Fig.

15.106(b).

A conduction angle less than 90° is therefore possible due only to

the phase shift introduced by the series R-C combination. Thus, it is

possible to construct a network of some significance with a rather sim-

ple pair of elements.

15.15 COMPUTER ANALYSIS
PSpice
Series  R-L-C Circuit The R-L-C network of Fig. 15.35 will now be

analyzed using OrCAD Capture. Since the inductive and capacitive

42.78 kV Vs /290°
}}}
250.78 kV /29.8°

(42.78 kV /290°)(Vs /0°)
}}}

247 kV 2 j 42.78 kV

170

80.24

20

0° 90° 360°
61.86°

V(volts)

Vlamp

Vcontrol

Vapplied

θ

(a)

180°

170

29.07
20

0° 90° 360°

80.2°

V(volts)

Vlamp

Vcontrol

Vapplied

θ

(b)

180°

FIG. 15.108
Light dimmer of Fig. 12.49: (a) rheostat set at 33 kV; (b) rheostat set at 200 kV.
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reactances cannot be entered onto the screen, the associated inductive

and capacitive levels were first determined as follows:

XL 5 2pf L ⇒ L 5 5 5 1.114 mH

XC 5 ⇒ C 5 5 5 53.05 mF

The values were then entered into the schematic as shown in Fig. 15.109.

For the ac source, the sequence is Place part icon-SOURCE-VSIN-

OK with VOFF set at 0 V, VAMPL set at 70.7 V (the peak value of

the applied sinusoidal source in Fig. 15.35), and FREQ 5 1 kHz. If we

double-click on the source symbol, the Property Editor will appear,

confirming the above choices and showing that DF 5 0 s, PHASE 5 0°,

and TD 5 0 s as set by the default levels. We are now ready to do an

analysis of the circuit for the fixed frequency of 1 kHz.

1
}}
2p(1 kHz)3 V

1
}
2pf XC

1
}
2pfC

7 V
}}
2p(1 kHz)

XL
}
2pf

FIG. 15.109
Using PSpice to analyze a series R-L-C ac circuit.

The simulation process is initiated by first selecting the New Simu-

lation Profile icon and inserting SeriesRLC as the Name followed by

Create. The Simulation Settings dialog will now appear, and since we

are continuing to plot the results against time, the Time Domain(Tran-

sient) option is selected under Analysis type. Since the period of each

cycle of the applied source is 1 ms, the Run to time will be set at 5 ms

so that five cycles will appear. The Start saving data after will be left

at 0 s even though there will be an oscillatory period for the reactive

elements before the circuit settles down. The Maximum step size will

be set at 5 ms/1000 5 5 ms. Finally OK is selected followed by the



COMPUTER ANALYSIS  691
a c

Run PSpice key. The result will be a blank screen with an x-axis

extending from 0 s to 5 ms.

The first quantity of interest is the current through the circuit, so

Trace-Add-Trace is selected followed by I(R) and OK. The resulting

plot of Fig. 15.110 clearly shows that there is a period of storing and

discharging of the reactive elements before a steady-state level is estab-

lished. It would appear that after 3 ms, steady-state conditions have

been essentially established. Select the Toggle cursor key, and left-

click the mouse; a cursor will result that can be moved along the axis

near the maximum value around 1.4 ms. In fact, the cursor reveals a

maximum value of 16.4 A which exceeds the steady-state solution by

over 2 A. A right click of the mouse will establish a second cursor on

the screen that can be placed near the steady-state peak around 4.4 ms.

The resulting peak value is about 14.15 A which is a match with the

longhand solution for Fig. 15.35. We will therefore assume that steady-

state conditions have been established for the circuit after 4 ms.

FIG. 15.110
A plot of the current for the circuit of Fig. 15.109 showing the transition from the transient state to

the steady-state response.

Let us now add the source voltage through Trace-Add Trace-

V(Vs:+)-OK to obtain the multiple plot at the bottom of Fig. 15.111.

For the voltage across the coil, the sequence Plot-Add Plot to Window-

Trace-Add Trace-V(L:1)-V(L:2) will result in the plot appearing at

the top of Fig. 15.111. Take special note of the fact that the Trace

Expression is V(L:1)2V(L:2) rather than just V(L:1) because V(L:1)

would be the voltage from that point to ground which would include the

voltage across the capacitor. In addition, the 2 sign between the two

comes from the Functions or Macros list at right of the Add Traces
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dialog box. Finally, since we know that the waveforms are fairly steady

after 3 ms, let us cut away the waveforms before 3 ms with Plot-Axis

Settings-X axis-User Defined-3ms to 5ms-OK to obtain the two

cycles of Fig. 15.111. Now you can clearly see that the peak value of

the voltage across the coil is 100 V to match the analysis of Fig. 15.35.

It is also clear that the applied voltage leads the input current by an

angle that can be determined using the cursors. First activate the cursor

option by selecting the cursor key (a red plot through the origin) in the

second toolbar down from the menu bar. Then select V(Vs:+) at the

bottom left of the screen with a left click of the mouse, and set it at that

point where the applied voltage passes through the horizontal axis with

a positive slope. The result is A1 5 4 ms at 24.243 mV > 0 V. Then

select I(R) at the bottom left of the screen with a right click of the

mouse, and place it at the point where the current waveform passes

through the horizontal axis with a positive slope. The result is A2 5

4.15 ms at 255.15 mA 5 0.55 A > 0 A (compared to a peak value of

14.14 A). At the bottom of the Probe Cursor dialog box, the time dif-

ference is 147.24 ms.

Now set up the ratio

5

v 5 52.99°

The phase angle by which the applied voltage leads the source is 52.99°

which is very close to the theoretical solution of 53.13° obtained in Fig.

15.39. Increasing the number of data points for the plot would have

increased the accuracy level and brought the results closer to 53.13°.

v
}
360°

147.24 ms
}}

1000 ms

FIG. 15.111
A plot of the steady-state response (t . 3 ms) for vL, vs, and i  for the circuit of Fig. 15.109.
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Electronics Workbench
We will now examine the response of a network versus frequency rather

than time using the network of Fig. 15.79 which now appears on the

schematic of Fig. 15.112. The ac current source appears as AC–CUR-

RENT–SOURCE in the Sources tool bin next to the ac voltage source. 

Note that the current source was given an amplitude of 1 A to establish

a magnitude match between the response of the voltage across the net-

work and the impedance of the network. That is,

) ZT ) 5 ) ) 5 ) ) 5 ) Vs )

Before applying computer methods, we should develop a rough idea

of what to expect so that we have something to which to compare the

computer solution. At very high frequencies such as 1 MHz, the imped-

ance of the inductive element will be about 25 kV which when placed

in parallel with the 220 V will look like an open circuit. The result is

that as the frequency gets very high, we should expect the impedance of

the network to approach the 220-V level of the resistor. In addition,

since the network will take on resistive characteristics at very high fre-

quencies, the angle associated with the input impedance should also

approach 0 V. At very low frequencies the reactance of the inductive

element will be much less than the 220 V of the resistor, and the net-

work will take on inductive characteristics. In fact, at, say, 10 Hz, the

reactance of the inductor is only about 0.25 V which is very close to a

short-circuit equivalent compared to the parallel 220-V resistor. The

result is that the impedance of the network is very close to 0 V at very

low frequencies. Again, since the inductive effects are so strong at low

Vs}
1 A

Vs}
Is

FIG. 15.112
Obtaining an impedance plot for a parallel R-L network using Electronics Workbench.
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frequencies, the phase angle associated with the input impedance

should be very close to 90°.

Now for the computer analysis. The current source, the resistor ele-

ment, and the inductor are all placed and connected using procedures

described in detail in earlier chapters. However, there is one big differ-

ence this time that the user must be aware of: Since the output will be

plotted versus frequency, the Analysis Setup heading must be selected

in the AC Current dialog box for the current source. When selected,

the AC Magnitude must be set to the value of the ac source. In this

case, the default level of 1A matches that of the applied source, so we

were set even if we failed to check the setting. In the future, however, a

voltage or current source may be used that does not have an amplitude

of 1, and proper entries must be made to this listing.

For the simulation the sequence Simulate-Analyses-AC Analysis is

first applied to obtain the AC Analysis dialog box. The Start fre-

quency will be set at 10 Hz so that we have entries at very low fre-

quencies, and the Stop frequency will be set at 1MHz so that we have

data points at the other end of the spectrum. The Sweep type can

remain Decade, but the number of points per decade will be 1000 so

that we obtain a detailed plot. The Vertical scale will be set on Linear.

Within Output variables we find that only one node, 1, is defined.

Shifting it over to the Selected variables for analysis column using the

Plot during simulation key pad and then hitting the Simulate key will

result in the two plots of Fig. 15.112. The Show/Hide Grid key was

selected to place the grid on the graph, and the Show/Hide Cursors

key was selected to place the AC Analysis dialog box appearing in Fig.

15.112. Since two graphs are present, we must define the one we are

working on by clicking on the Voltage or Phase heading on the left side

of each plot. A small red arrow will appear when selected to keep us

aware of the active plot. When setting up the cursors, be sure that you

have activated the correct plot. When the red cursor is moved to 10 Hz

(x1), we find that the voltage across the network is only 0.251 V (y1),

resulting in an input impedance of only 0.25 V—quite small and

matching our theoretical prediction. In addition, note that the phase

angle is essentially at 90° in the other plot, confirming our other

assumption above—a totally inductive network. If we set the blue cur-

sor near 100 kHz (x2 5 102.3 kHz), we find that the impedance at

219.2 V (y2) is closing in on the resistance of the parallel resistor of

220 V, again confirming the preliminary analysis above. As noted in the

bottom of the AC Analysis box, the maximum value of the voltage is

219.99 V or essentially 220 V at 1 MHz. Before leaving the plot, note

the advantages of using a log axis when you want a response over a

wide frequency range.
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PROBLEMS
SECTION 15.2 Impedance and the Phasor Diagram

1. Express the impedances of Fig. 15.113 in both polar and

rectangular forms.

 = 157 rad/sω
  f  = 10 kHz

R = 6.8 Ω

L = 2 H

 = 377 rad/sω

L = 0.05 H

 f  = 50 Hz

 = 377 rad/sω

C = 10    Fµ C = 0.05    Fµ R = 200 Ω

(a) (b) (c)

(d) (e) (f)

FIG. 15.113
Problem 1.

2. Find the current i for the elements of Fig. 15.114 using

complex algebra. Sketch the waveforms for v and i on the

same set of axes.

i

R 3 V

(a)

v  =  21 sin(qt + 10°)

i

XL 7 V

(b)

v  =  49 sin(qt + 70°)

i

XC 100 V

(c)

v  =  25 sin(qt – 20°)

+

–

+

–

+

–

i

R  =  5.1 kV

(d)

v  =  4 3 10–3 sin(qt – 120°)

i

L  =  0.1 H

(e)

v  =  16 sin(377t + 60°)

i

C  =  2 mF

(f)

v  =  120 sin qt

+

–

+

–

+

–
f  =  5 kHz

FIG. 15.114
Problem 2.

3. Find the voltage v for the elements of Fig. 15.115 using

complex algebra. Sketch the waveforms of v and i on the

same set of axes.

FIG. 15.115
Problem 3.

0.016 H

i  =  1.5 sin(377t + 60°)

v
+

–

i  =  4 3 10–3 sin qt

R 22 V

(a)

v L

(b)

i  =  0.02 sin(157t + 40°)

C 0.05 mF

(c)

v
+

–

+

–

a c
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SECTION 15.3 Series Configuration
4. Calculate the total impedance of the circuits of Fig.

15.116. Express your answer in rectangular and polar

forms, and draw the impedance diagram.

XL2
  =  7 kV

4 kV

R1  =  1 kV

R2

(c)

XL1
 =  3 kV

ZT

R  =  6.8 V

XL 6.8 V

(a)

ZT
8 V

R1  =  2 V

R2

(b)

XC  =  6 V

ZT

FIG. 15.116
Problem 4.

L2  =  0.2 H

C  =  10 mF

R  =  47 V

(c)

L1  =  0.06 H

ZT

R  =  3 V

XL 4 V

(a)

ZT
5 kV

R  = 0.5 kV

XL2

(b)

ZT

XC  =  7 V XC  =  4 kV

XL1
  =  2 kV

f  =  1 kHz

FIG. 15.117
Problem 5.

5. Calculate the total impedance of the circuits of Fig.

15.117. Express your answer in rectangular and polar

forms, and draw the impedance diagram.

6. Find the type and impedance in ohms of the series circuit

elements that must be in the closed container of Fig.

15.118 for the indicated voltages and currents to exist at

the input terminals. (Find the simplest series circuit that

will satisfy the indicated conditions.)

I  =  60 A ∠ 70°

E  =  120 V ∠ 0° ?

(a)

+

–

I  =  20 mA ∠ 40°

E  =  80 V ∠ 320° ?

(b)

+

–

I  =  0.2 A ∠ –60°

E  =  8 kV ∠ 0° ?

(c)

+

–

FIG. 15.118
Problems 6 and 26.
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7. For the circuit of Fig. 15.119:

a. Find the total impedance ZT in polar form.

b. Draw the impedance diagram.

c. Find the current I and the voltages VR and VL in pha-

sor form.

d. Draw the phasor diagram of the voltages E, VR, and

VL, and the current I.

e. Verify Kirchhoff’s voltage law around the closed loop.

f. Find the average power delivered to the circuit.

g. Find the power factor of the circuit, and indicate

whether it is leading or lagging.

h. Find the sinusoidal expressions for the voltages and

current if the frequency is 60 Hz.

i. Plot the waveforms for the voltages and current on the

same set of axes.

8. Repeat Problem 7 for the circuit of Fig. 15.120, replacing

VL with VC in parts (c) and (d).

E  =  100 V ∠ 0°

R  =  8 V

VR
+ –

VL
+ –

XL  =  6 V

I

+

–
ZT

FIG. 15.119
Problems 7 and 47.

E  =  120 V ∠ 20°

R  =  10 V

VR
+ –

VC
+ –

XC  =  30 V

I

+

–
ZT

FIG. 15.120
Problem 8.

+

–
ZT

vC
+ –

0.1 mF

C

0.47 kV

vR
+ –

Ri

e  =  20 sin qt
f  =  1 kHz

FIG. 15.121
Problems 9 and 49.

9. Given the network of Fig. 15.121:

a. Determine ZT.

b. Find I.

c. Calculate VR and VL.

d. Find P and Fp.

10. For the circuit of Fig. 15.122:

a. Find the total impedance ZT in polar form.

b. Draw the impedance diagram.

c. Find the value of C in microfarads and L in henries.

d. Find the current I and the voltages VR, VL, and VC in

phasor form.

e. Draw the phasor diagram of the voltages E, VR, VL,

and VC, and the current I.

f. Verify Kirchhoff’s voltage law around the closed loop.

g. Find the average power delivered to the circuit.

h. Find the power factor of the circuit, and indicate

whether it is leading or lagging.

i. Find the sinusoidal expressions for the voltages and

current.

j. Plot the waveforms for the voltages and current on the

same set of axes.

FIG. 15.122
Problem 10.

+

–
ZT

vL
+ –

XC  =  10 V

vR
+ –

R  =  2 V

e  =  70.7 sin 377t

vC
+ –

XL  =  6 V

i



+

–
ZT

vL
+ –

XC  =  1 kV

vR
+ –

R  =  3 kV

e  =  6 sin(314t + 60°)

vC
+ –

XL  =  2 kV

i

FIG. 15.123
Problem 11.
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E = 20 V(rms) 80 V Scope = 45.27 V( p -p)

+

–

R+

–

FIG. 15.124
Problem 12.

Scope = 21.28 V( p -p)

+

–

R+

–

29.94 mA(rms)

L

I

E = 10 V(rms)
f = 1 kHz

FIG. 15.125
Problem 13.

*13. Using the DMM current reading and the oscilloscope

measurement of Fig. 15.125:

a. Determine the inductance L.

b. Find the resistance R.

11. Repeat Problem 10 for the circuit of Fig. 15.123.

12. Using the oscilloscope reading of Fig. 15.124, determine

the resistance R.

*14. Using the oscilloscope reading of Fig. 15.126, determine

the capacitance C.

E = 12 V(rms)

Scope = 8.27 V( p -p)
+

+

–

C

R

10 kV

–

f = 40 kHz

FIG. 15.126
Problem 14.

+

–

V1+ –

9 V6.8 V

E  =  60 V ∠ 5°
V2

+ –

40 V

(b)

+

–

V2
+ –

2 kV

E  =  120 V ∠ 20°

6 kV

(a)

V1+ –

FIG. 15.127
Problem 15.

SECTION 15.4 Voltage Divider Rule
15. Calculate the voltages V1 and V2 for the circuit of Fig.

15.127 in phasor form using the voltage divider rule.
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+

–

V1

3.3 kV4.7 kV

E  =  120 V ∠ 0°

30 kV

(b)

+

–

V2
+ –

20 V

E  =  20 V ∠ 70°

20 V

(a)

V1
+ –

60 V

V2 10 kV

FIG. 15.128
Problem 16.

vC+ –

+

–

30 V

e  = =2(20) sin(377t + 40°)

L  = 0.2 H

i

C  =  4 mF
L  = 0.2 H

vR+ –

FIG. 15.129
Problems 17, 18, and 50.

*17. For the circuit of Fig. 15.129:

a. Determine I, VR, and VC in phasor form.

b. Calculate the total power factor, and indicate whether

it is leading or lagging.

c. Calculate the average power delivered to the circuit.

d. Draw the impedance diagram.

e. Draw the phasor diagram of the voltages E, VR, and

VC, and the current I.

f. Find the voltages VR and VC using the voltage divider

rule, and compare them with the results of part (a)

above.

g. Draw the equivalent series circuit of the above as far

as the total impedance and the current i are concerned.

16. Calculate the voltages V1 and V2 for the circuit of Fig.

15.128 in phasor form using the voltage divider rule.

*18. Repeat Problem 17 if the capacitance is changed to 

1000 mF.

19. An electrical load has a power factor of 0.8 lagging. It

dissipates 8 kW at a voltage of 200 V. Calculate the

impedance of this load in rectangular coordinates.
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*23. For the series R-L-C circuit of Fig. 15.133:

a. Plot ZT and vT versus frequency for a frequency range

of zero to 20 kHz in increments of 1 kHz.

b. Plot VC (magnitude only) versus frequency for the

same frequency range of part (a).

c. Plot I (magnitude only) versus frequency for the same

frequency range of part (a).

ZT C

R

E  =  120 V ∠0° VC

+

–

L

8 nF

1 kV 20 mH

I

FIG. 15.133
Problem 23.

SECTION 15.5 Frequency Response of the 
R-C Circuit
*21. For the circuit of Fig. 15.131:

a. Plot ZT and vT versus frequency for a frequency range

of zero to 20 kHz.

b. Plot VL versus frequency for the frequency range of

part (a).

c. Plot vL versus frequency for the frequency range of

part (a).

d. Plot VR versus frequency for the frequency range of

part (a).

L 20 mH VL

–

+
ZT

1 kV

R

VR –+

+

–

e  =  7.07 sin qt
E  =  5 V ∠ 0°

FIG. 15.131
Problem 21.

*22. For the circuit of Fig. 15.132:

a. Plot ZT and vT versus frequency for a frequency range

of zero to 10 kHz.

b. Plot VC versus frequency for the frequency range of

part (a).

c. Plot vC versus frequency for the frequency range of

part (a).

d. Plot VR versus frequency for the frequency range of

part (a).

C 0.5 mF VC

–

+
ZT

100 V

R

VR –+

+

–

e  = =2(10) sin qt

FIG. 15.132
Problem 22.

*20. Find the series element or elements that must be in the

enclosed container of Fig. 15.130 to satisfy the following

conditions:

a. Average power to circuit 5 300 W.

b. Circuit has a lagging power factor.

+

–

2 V

E  =  120 V ∠ 0°

I  =  3 A ∠ v

?

FIG. 15.130
Problem 20.
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SECTION 15.7 Admittance and Susceptance
24. Find the total admittance and impedance of the circuits of

Fig. 15.134. Identify the values of conductance and sus-

ceptance, and draw the admittance diagram.

22 V

ZT

YT

(d)

10 V 60 V

ZT

YT

(e)

22 V 6 V 9 kV

ZT

YT

(f)

3 kV 6 kV

ZT

YT

(a)

R  =  47 V

ZT

YT

(b)

XL  =  200 V

ZT

YT

(c)

XC  =  0.6 V

25. Find the total admittance and impedance of the circuits of

Fig. 15.135. Identify the values of conductance and sus-

ceptance, and draw the admittance diagram.

FIG. 15.134
Problem 24.

26. Repeat Problem 6 for the parallel circuit elements that

must be in the closed container for the same voltage and

current to exist at the input terminals. (Find the simplest

parallel circuit that will satisfy the conditions indicated.)

0.6 kV

(c)

0.5 kVR  =  3 V

XL  =  8 V

(a)

ZT

20 V

40 V

(b)

70 V

YT

ZT

YT

0.2 kV

ZT

YT

FIG. 15.135
Problem 25.
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SECTION 15.8 Parallel ac Networks
27. For the circuit of Fig. 15.136:

a. Find the total admittance YT in polar form.

b. Draw the admittance diagram.

c. Find the voltage E and the currents IR and IL in pha-

sor form.

d. Draw the phasor diagram of the currents Is, IR, and IL,

and the voltage E.

e. Verify Kirchhoff’s current law at one node.

f. Find the average power delivered to the circuit.

g. Find the power factor of the circuit, and indicate

whether it is leading or lagging.

h. Find the sinusoidal expressions for the currents and

voltage if the frequency is 60 Hz.

i. Plot the waveforms for the currents and voltage on the

same set of axes.

28. Repeat Problem 27 for the circuit of Fig. 15.137, replac-

ing IL with IC in parts (c) and (d).

29. Repeat Problem 27 for the circuit of Fig. 15.138, replac-

ing E with Is in part (c).

E 20 kVXC

+

–

R 10 kV

IR

Is  =  2 mA ∠ 20°

IC

FIG. 15.137
Problem 28.

10 VXL

+

–

R 12 V

IR

Is

IL

YT

E  =  60 V ∠ 0°

FIG. 15.138
Problems 29 and 48.

30. For the circuit of Fig. 15.139:

a. Find the total admittance YT in polar form.

b. Draw the admittance diagram.

c. Find the value of C in microfarads and L in henries.

d. Find the voltage E and currents IR, IL, and IC in pha-

sor form.

e. Draw the phasor diagram of the currents Is, IR, IL, and

IC, and the voltage E.

f. Verify Kirchhoff’s current law at one node.

g. Find the average power delivered to the circuit.

h. Find the power factor of the circuit, and indicate

whether it is leading or lagging.

i. Find the sinusoidal expressions for the currents and

voltage.

j. Plot the waveforms for the currents and voltage on the

same set of axes.

is  =  3 sin(377t + 60°) R 1.2 V 2 VXL XC 5 V

+

–

iR iL iC

e

FIG. 15.139
Problem 30.

E 5 VXL

+

–

YT

R 2 V

IR

Is  =  2 A ∠ 0°

IL

FIG. 15.136
Problem 27.
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31. Repeat Problem 30 for the circuit of Fig. 15.140.

32. Repeat Problem 30 for the circuit of Fig. 15.141, replac-

ing e with is in part (d).

is  =  5 3 10–3 sin(377t – 20°) R 3 kV 4 kVXL XC 2 kV

+

–

iR iL iC

e

FIG. 15.140
Problem 31.

e  =  35.4 sin(314t + 60°) XC 5 V 22 VR XL 10 V

+

–

iC iR iL
YT

is

FIG. 15.141
Problem 32.

SECTION 15.9 Current Divider Rule
33. Calculate the currents I1 and I2 of Fig. 15.142 in phasor

form using the current divider rule.

I  =  20 A ∠ 40°

R 33 V

60 VXL1

10 VXL2

I1

I2

I  =  6 A ∠ 30°

I1

R

3 V

XL

4 V

I2
XC

6 V

(b)(a)

FIG. 15.142
Problem 33.

SECTION 15.10 Frequency Response of the Parallel
R-L Network
*34. For the parallel R-C network of Fig. 15.143:

a. Plot ZT and vT versus frequency for a frequency range

of zero to 20 kHz.

b. Plot VC versus frequency for the frequency range of

part (a).

c. Plot IR versus frequency for the frequency range of

part (a).

VC2 mFC

+

–

R 40 V

IR

ZT

I  =  50 mA ∠0°

FIG. 15.143
Problems 34 and 36.
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*35. For the parallel R-L network of Fig. 15.144:

a. Plot ZT and vT versus frequency for a frequency range

of zero to 10 kHz.

b. Plot IL versus frequency for the frequency range of

part (a).

c. Plot IR versus frequency for the frequency range of

part (a).

36. Plot YT and vT (of YT 5 YT /vT) for a frequency range of

zero to 20 kHz for the network of Fig. 15.143.

37. Plot YT and vT (of YT 5 YT /vT) for a frequency range of

zero to 10 kHz for the network of Fig. 15.144.

38. For the parallel R-L-C network of Fig. 15.145:

a. Plot YT and vT (of YT 5 YT /vT) for a frequency range

of zero to 20 kHz.

b. Repeat part (a) for ZT and vT (of ZT 5 ZT /vT).

c. Plot VC versus frequency for the frequency range of

part (a).

d. Plot IL versus frequency for the frequency range of

part (a).

200 mHL

+

–

R 5 kV

IR

ZT

E  =  40 V ∠0°

IL

FIG. 15.144
Problems 35 and 37.

I  =  10 mA ∠0° R 1 kV
100 mH

L C 4 nF

ZT

IL

VC

+

–
YT

FIG. 15.145
Problem 38.

SECTION 15.12 Equivalent Circuits
39. For the series circuits of Fig. 15.146, find a parallel cir-

cuit that will have the same total impedance (ZT).

22 V

(a)

40 V

ZT

2 kV

(b)

8 kV

ZT

6 kV

FIG. 15.146
Problem 39.

40. For the parallel circuits of Fig. 15.147, find a series cir-

cuit that will have the same total impedance.

4.7 kV

R 20 kVXC
ZT

(a)

60 V
68 VRZT

(b)

XL

20 VXC

FIG. 15.147
Problem 40.
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41. For the network of Fig. 15.148:

a. Calculate E, IR, and IL in phasor form.

b. Calculate the total power factor, and indicate whether

it is leading or lagging.

c. Calculate the average power delivered to the circuit.

d. Draw the admittance diagram.

e. Draw the phasor diagram of the currents Is, IR, and IL,

and the voltage E.

f. Find the current IC for each capacitor using only

Kirchhoff’s current law.

g. Find the series circuit of one resistive and reactive

element that will have the same impedance as the

original circuit.

*42. Repeat Problem 41 if the inductance is changed to 1 H.

43. Find the element or elements that must be in the closed

container of Fig. 15.149 to satisfy the following condi-

tions. (Find the simplest parallel circuit that will satisfy

the indicated conditions.)

a. Average power to the circuit 5 3000 W.

b. Circuit has a lagging power factor.

e R

220 V

1 mFC C 1 mF

+

–

iR iL

is  = =2 sin 2p 1000t

L  =  10 mH

FIG. 15.148
Problems 41 and 42.

E  =  100 V ∠ 0° ?20 V

I  =  40 A ∠ v

FIG. 15.149
Problem 43.

SECTION 15.13 Phase Measurements 
(Dual-Trace Oscilloscope)
44. For the circuit of Fig. 15.150, determine the phase rela-

tionship between the following using a dual-trace oscillo-

scope. The circuit can be reconstructed differently for

each part, but do not use sensing resistors. Show all con-

nections on a redrawn diagram.

a. e and vC

b. e and is
c. e and vL

is

C

R

e vC

+

–

L

vR –+

+

–

vL –+

FIG. 15.150
Problem 44.

45. For the network of Fig. 15.151, determine the phase rela-

tionship between the following using a dual-trace oscillo-

scope. The network must remain as constructed in Fig.

15.151, but sensing resistors can be introduced. Show all

connections on a redrawn diagram.

a. e and vR2

b. e and is
c. iL and iC

is

C

R1

e

+

–

iCvR2

+

–

iL
L

R2

FIG. 15.151
Problem 45.
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46. For the oscilloscope traces of Fig. 15.152:

a. Determine the phase relationship between the wave-

forms, and indicate which one leads or lags.

b. Determine the peak-to-peak and rms values of each

waveform.

c. Find the frequency of each waveform.

Vertical sensitivity = 0.5 V/div.
Horizontal sensitivity = 0.2 ms/div.

v1

v2

Vertical sensitivity = 2 V/div.
Horizontal sensitivity = 10    s/div.

v1

v2

m

(II)(I)

FIG. 15.152
Problem 46.

SECTION 15.15 Computer Analysis
PSpice or Electronics Workbench
47. For the network of Fig. 15.119 (use f 5 1 kHz):

a. Determine the rms values of the voltages VR and VL

and the current I.

b. Plot vR, vL, and i versus time on separate plots.

c. Place e, vR, vL, and i on the same plot, and label

accordingly.

48. For the network of Fig. 15.138:

a. Determine the rms values of the currents Is, IR, and IL.

b. Plot is, iR, and iL versus time on separate plots.

c. Place e, is, iR, and iL on the same plot, and label

accordingly.

49. For the network of Fig. 15.121:

a. Plot the impedance of the network versus frequency

from 0 to 10 kHz.

b. Plot the current i versus frequency for the frequency

range zero to 10 kHz.

*50. For the network of Fig. 15.129:

a. Find the rms values of the voltages vR and vC at a fre-

quency of 1 kHz.

b. Plot vC versus frequency for the frequency range zero

to 10 kHz.

c. Plot the phase angle between e and i for the frequency

range zero to 10 kHz.

Programming Language (C11, QBASIC, Pascal, etc.)
51. Write a program to generate the sinusoidal expression for

the current of a resistor, inductor, or capacitor given the

value of R, L, or C and the applied voltage in sinusoidal

form.

52. Given the impedance of each element in rectangular

form, write a program to determine the total impedance

in rectangular form of any number of series elements.

53. Given two phasors in polar form in the first quadrant,

write a program to generate the sum of the two phasors in

polar form.
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GLOSSARY
Admittance A measure of how easily a network will

“admit” the passage of current through that system. It is

measured in siemens, abbreviated S, and is represented by

the capital letter Y.

Admittance diagram A vector display that clearly depicts

the magnitude of the admittance of the conductance,

capacitive susceptance, and inductive susceptance, and

the magnitude and angle of the total admittance of the

system.

Current divider rule A method by which the current

through either of two parallel branches can be determined

in an ac network without first finding the voltage across the

parallel branches.

Equivalent circuits For every series ac network there is a

parallel ac network (and vice versa) that will be “equiva-

lent” in the sense that the input current and impedance are

the same.

Impedance diagram A vector display that clearly depicts

the magnitude of the impedance of the resistive, reactive,

and capacitive components of a network, and the magnitude

and angle of the total impedance of the system.

Parallel ac circuits A connection of elements in an ac net-

work in which all the elements have two points in common.

The voltage is the same across each element.

Phasor diagram A vector display that provides at a glance

the magnitude and phase relationships among the various

voltages and currents of a network.

Series ac configuration A connection of elements in an ac

network in which no two impedances have more than one

terminal in common and the current is the same through

each element.

Susceptance A measure of how “susceptible” an element is to

the passage of current through it. It is measured in siemens,

abbreviated S, and is represented by the capital letter B.

Voltage divider rule A method through which the voltage

across one element of a series of elements in an ac network

can be determined without first having to find the current

through the elements.





16

16.1 INTRODUCTION
In this chapter, we shall utilize the fundamental concepts of the previ-

ous chapter to develop a technique for solving series-parallel ac net-

works. A brief review of Chapter 7 may be helpful before considering

these networks since the approach here will be quite similar to that

undertaken earlier. The circuits to be discussed will have only one

source of energy, either potential or current. Networks with two or more

sources will be considered in Chapters 17 and 18, using methods previ-

ously described for dc circuits.

In general, when working with series-parallel ac networks, consider

the following approach:

1. Redraw the network, employing block impedances to combine

obvious series and parallel elements, which will reduce the

network to one that clearly reveals the fundamental structure of

the system.

2. Study the problem and make a brief mental sketch of the overall

approach you plan to use. Doing this may result in time- and

energy-saving shortcuts. In some cases a lengthy, drawn-out

analysis may not be necessary. A single application of a

fundamental law of circuit analysis may result in the desired

solution.

3. After the overall approach has been determined, it is usually best

to consider each branch involved in your method independently

before tying them together in series-parallel combinations. In most

cases, work back from the obvious series and parallel combi-

nations to the source to determine the total impedance of the

network. The source current can then be determined, and the path

back to specific unknowns can be defined. As you progress back to

the source, continually define those unknowns that have not been

lost in the reduction process. It will save time when you have to

work back through the network to find specific quantities.

Series-Parallel ac Networks
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4. When you have arrived at a solution, check to see that it is

reasonable by considering the magnitudes of the energy source

and the elements in the circuit. If not, either solve the network

using another approach, or check over your work very carefully.

At this point a computer solution can be an invaluable asset in the

validation process.

16.2 ILLUSTRATIVE EXAMPLES

EXAMPLE 16.1 For the network of Fig. 16.1:

a. Calculate ZT.

b. Determine Is.

c. Calculate VR and VC.

d. Find IC.

e. Compute the power delivered.

f. Find Fp of the network.

Solutions:
a. As suggested in the introduction, the network has been redrawn

with block impedances, as shown in Fig. 16.2. The impedance Z1

is simply the resistor R of 1 V, and Z2 is the parallel combination

of XC and XL. The network now clearly reveals that it is funda-

mentally a series circuit, suggesting a direct path toward the total

impedance and the source current. As noted in the introduction,

for many such problems you must work back to the source to find

first the total impedance and then the source current. When the

unknown quantities are found in terms of these subscripted imped-

ances, the numerical values can then be substituted to find the

magnitude and phase angle of the unknown. In other words, try to

find the desired solution solely in terms of the subscripted imped-

ances before substituting numbers. This approach will usually

enhance the clarity of the chosen path toward a solution while

saving time and preventing careless calculation errors. Note also

in Fig. 16.2 that all the unknown quantities except IC have been

preserved, meaning that we can use Fig. 16.2 to determine these

quantities rather than having to return to the more complex net-

work of Fig. 16.1.

R

1 V
+

–

E  =  120 V ∠ 0°

VR
+ –

VC
+ –

XC

XL

Is

ZT

IC 2 V

3 V

FIG. 16.1
Example 16.1.

+

–

Is

ZTE  =  120 V ∠ 0°

Z1 Z2

FIG. 16.2
Network of Fig. 16.1 after assigning the block 

impedances.
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The total impedance is defined by

ZT 5 Z1 1 Z2

with

Z1 5 R /0° 5 1 V /0°

Z2 5 ZC \ ZL 5 5
(2 V /290°)(3 V /90°)
}}}

2j 2 V 1 j 3 V

(XC /290°)(XL /90°)
}}}

2j XC 1 j XL

5 5 5 6 V /290°

and

ZT 5 Z1 1 Z2 5 1 V 2 j 6 V 5 6.08 V /280.54°

b. Is 5 5 5 19.74 A /80.54°

c. Referring to Fig. 16.2, we find that VR and VC can be found by a

direct application of Ohm’s law:

VR 5 IsZ1 5 (19.74 A /80.54°)(1 V /0°) 5 19.74 V /80.54°

VC 5 IsZ2 5 (19.74 A /80.54°)(6 V /290°)

5 118.44 V /29.46°

d. Now that VC is known, the current IC can also be found using Ohm’s

law.

IC 5 5 5 59.22 A /80.54°

e. Pdel 5 I2
sR 5 (19.74 A)2(1 V) 5 389.67 W

f. Fp 5 cos v 5 cos 80.54° 5 0.164 leading

The fact that the total impedance has a negative phase angle (reveal-

ing that Is leads E) is a clear indication that the network is capacitive in

nature and therefore has a leading power factor. The fact that the net-

work is capacitive can be determined from the original network by first

realizing that, for the parallel L-C elements, the smaller impedance pre-

dominates and results in an R-C network.

EXAMPLE 16.2 For the network of Fig. 16.3:

a. If I is 50 A /30°, calculate I1 using the current divider rule.

b. Repeat part (a) for I2.

c. Verify Kirchhoff’s current law at one node.

Solutions:
a. Redrawing the circuit as in Fig. 16.4, we have

Z1 5 R 1 j XL 5 3 V 1 j 4 V 5 5 V /53.13°

Z2 5 2j XC 5 2j 8 V 5 8 V /290°

Using the current divider rule yields

I1 5 5 5

5 5 80 A /26.87°
400 /260°
}}
5 /253.13°

400 /260°
}}

3 2 j 4

(8 V /290°)(50 A /30°)
}}}
(2j 8 V) 1 (3 V 1 j 4 V)

Z2I
}
Z2 1 Z1

118.44 V /29.46°
}}}

2 V /290°

VC
}
ZC

120 V /0°
}}}
6.08 V /280.54°

E
}
ZT

6 V /0°
}
1 /90°

6 V /0°
}

j 1

R 3 V

XL

XC
8 V

4 V
I

I1 I2

FIG. 16.3
Example 16.2.

I

I1 I2

Z2Z1

FIG. 16.4
Network of Fig. 16.3 after assigning the block 

impedances.
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b. I2 5 5 5

5 50 A /136.26°

c. I 5 I1 1 I2

50 A /30° 5 80 A /26.87° 1 50 A /136.26°

5 (79.43 2 j 9.57) 1 (236.12 1 j 34.57)

5 43.31 1 j 25.0

50 A /30° 5 50 A /30° (checks)

EXAMPLE 16.3 For the network of Fig. 16.5:

a. Calculate the voltage VC using the voltage divider rule.

b. Calculate the current Is.

Solutions:
a. The network is redrawn as shown in Fig. 16.6, with

Z1 5 5 V 5 5 V /0°

Z2 5 2j 12 V 5 12 V /290°

Z3 5 1j 8 V 5 8 V /90°

Since VC is desired, we will not combine R and XC into a single

block impedance. Note also how Fig. 16.6 clearly reveals that E is

the total voltage across the series combination of Z1 and Z2, permit-

ting the use of the voltage divider rule to calculate VC. In addition,

note that all the currents necessary to determine Is have been pre-

served in Fig. 16.6, revealing that there is no need to ever return to

the network of Fig. 16.5—everything is defined by Fig. 16.6.

VC 5 5 5

5 18.46 V /22.62°

b. I1 5 5 5 2.5 A /270°

I2 5 5 5 1.54 A /87.38°

and

Is 5 I1 1 I2

5 2.5 A /270° 1 1.54 A /87.38°

5 (0.86 2j 2.35) 1 (0.07 1 j 1.54)

Is 5 0.93 2 j 0.81 5 1.23 A /241.05°

EXAMPLE 16.4 For Fig. 16.7:

a. Calculate the current Is.

b. Find the voltage Vab.

Solutions:
a. Redrawing the circuit as in Fig. 16.8, we obtain

Z1 5 R1 1 j XL 5 3 V 1 j 4 V 5 5 V /53.13°

Z2 5 R2 2 j XC 5 8 V 2 j 6 V 5 10 V /236.87°

In this case the voltage Vab is lost in the redrawn network, but the

currents I1 and I2 remain defined for future calculations necessary

20 V /20°
}}
13 V /267.38°

E
}
Z1 1 Z2

20 V /20°
}}
8 V /90°

E
}
Z3

240 V /270°
}}
13 /267.38°

(12 V /290°)(20 V /20°)
}}}

5 V 2 j 12 V

Z2E
}
Z1 1 Z2

250 /83.13°
}}
5 /253.13°

(5 V /53.13°)(50 A /30°)
}}}

5 V /253.13°

Z1I
}
Z2 1 Z1

R

5 V

+

–

20 V ∠ 20°

+

–
XC

XL

Is

12 V8 V VCE

FIG. 16.5
Example 16.3.

E

I1 I2

Z1

Z3

Z2

Is

+

–

VC

+

–

FIG. 16.6
Network of Fig. 16.5 after assigning the block 

impedances.

R1 3 V

XL
XC 6 V4 V

I1 I2

Vaba b

R2 8 V

Is

+

–

E  =  100 V ∠ 0°

FIG. 16.7
Example 16.4.
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to determine Vab. Figure 16.8 clearly reveals that the total imped-

ance can be found using the equation for two parallel impedances:

ZT 5 5

5 5

5 4.472 V /26.56°

and Is 5 5 5 22.36 A /226.56°

b. By Ohm’s law,

I1 5 5 5 20 A /253.13°

I2 5 5 5 10 A /36.87°

Returning to Fig. 16.7, we have

VR1
5 I1ZR1

5 (20 A /253.13°)(3 V /0°) 5 60 V /253.13°

VR2
5 I1ZR2

5 (10 A /136.87°)(8 V /0°) 5 80 V /136.87°

Instead of using the two steps just shown, we could have determined

VR1
or VR2

in one step using the voltage divider rule:

VR1
5 5 5 60 V /253.13°

To find Vab, Kirchhoff’s voltage law must be applied around the

loop (Fig.16.9) consisting of the 3-V and 8-V resistors. By Kirch-

hoff’s voltage law,

Vab 1 VR1
2 VR2

5 0

or Vab 5 VR2 2 VR1

5 80 V /36.87° 2 60 V /2 53.13°

5 (64 1 j 48) 2 (36 2 j 48)

5 28 1 j 96

Vab 5 100 V /73.74°

EXAMPLE 16.5 The network of Fig. 16.10 is frequently encountered

in the analysis of transistor networks. The transistor equivalent circuit

includes a current source I and an output impedance Ro. The resistor

RC is a biasing resistor to establish specific dc conditions, and the

resistor Ri represents the loading of the next stage. The coupling

capacitor is designed to be an open circuit for dc and to have as low

an impedance as possible for the frequencies of interest to ensure that

VL is a maximum value. The frequency range of the example includes

the entire audio (hearing) spectrum from 100 Hz to 20 kHz. The pur-

pose of the example is to demonstrate that, for the full audio range,

the effect of the capacitor can be ignored. It performs its function as a

dc blocking agent but permits the ac to pass through with little distur-

bance.

300 V /0°
}}
5 /53.13°

(3 V /0°)(100 V /0°)
}}}
3 V /0° 1 4 V /90°

100 V /0°
}}
10 V /236.87°

E
}
Z2

100 V /0°
}}
5 V /53.13°

E
}
Z1

100 V /0°
}}
4.472 V /26.56°

E
}
ZT

50 V /16.26°
}}
11.18 /210.30°

50 V /16.26°
}}

11 2 j 2

(5 V /53.13°)(10 V /236.87°)
}}}}
(3 V 1 j 4 V) 1 (8 V 2 j 6 V)

Z1Z2
}
Z1 1 Z2

I1 I2

Z2Z1

I

YT

+

–

E  =  100 V ∠ 0°

FIG. 16.8
Network of Fig. 16.7 after assigning the block 

impedances.

3 V

Vaba b

VR2
8 V

+

–
VR1

+

–

+ –

FIG. 16.9
Determining the voltage Vab for the network

of Fig. 16.7.
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a. Determine VL for the network of Fig. 16.10 at a frequency of 

100 Hz.

b. Repeat part (a) at a frequency of 20 kHz.

c. Compare the results of parts (a) and (b).

Solutions:
a. The network is redrawn with subscripted impedances in Fig.

16.11.

Z1 5 50 kV /0° \ 3.3 kV /0° 5 3.096 kV /0°

Z2 5 Ri 2 j XC

At f 5 100 Hz: XC 5 5 5 159.16 V

and Z2 5 1 kV 2 j 159.16 V

Current divider rule:

IL 5 5

5 5

5 3.021 mA /2.225°

and VL 5 ILZR

5 (3.021 mA /2.225°)(1 kV /0°)

5 3.021 V /2.225°

b. At f 5 20 kHz: XC 5 5 5 0.796 V

Note the dramatic change in XC with frequency. Obviously, the

higher the frequency, the better the short-circuit approximation for

XC for ac conditions.

Z2 5 1 kV 2 j 0.796 V

Current divider rule:

IL 5 5

5 5

5 3.023 mA /0.011°

12.384 A /0°
}}
4096 /20.011°

12.384 A /0°
}}
4096 2 j 0.796 V

(3.096 kV /0°)(4 mA /0°)
}}}}
3.096 kV 1 1 kV 2j 0.796 V

Z1I
}
Z1 1 Z2

1
}}}
2p(20 kHz)(10 mF)

1
}
2pfC

12.384 A /0°
}}
4099 /22.225°

12.384 A /0°
}}
4096 2 j 159.16

(3.096 kV /0°)(4 mA /0°)
}}}}
3.096 kV 1 1 kV 2 j 159.16 V

Z1I
}
Z1 1 Z2

1
}}
2p(100 Hz)(10 mF)

1
}
2pfC

10 mF
Ro

50 kV RC 3.3 kV

Next stage
Coupling
capacitor

Ri 1 kV VL

+

–

Transistor equivalent
network

Biasing
network

I 4 mA ∠ 0°

m

FIG. 16.10
Basic transistor amplifier.

Z2Z1

IL

VL

+

–

I 4 mA ∠ 0°

FIG. 16.11
Network of Fig. 16.10 following the assign-

ment of the block impedances.
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and VL 5 ILZR

5 (3.023 mA /0.011°)(1 kV /0°)

5 3.023 V /0.011°

c. The results clearly indicate that the capacitor had little effect on the

frequencies of interest. In addition, note that most of the supply cur-

rent reached the load for the typical parameters employed.

EXAMPLE 16.6 For the network of Fig. 16.12:

I

I1
6 mA
∠ 20° V

+

–

I2
4 mA
∠ 0°R1 2 kV R3 6.8 kV

R2 10 kV

20 kVXC

FIG. 16.12
Example 16.6.

a. Determine the current I.

b. Find the voltage V.

Solutions:
a. The rules for parallel current sources are the same for dc and ac net-

works. That is, the equivalent current source is their sum or differ-

ence (as phasors). Therefore,

IT 5 6 mA /20° 2 4 mA /0°

5 5.638 mA 1 j 2.052 mA 2 4 mA

5 1.638 mA 1 j 2.052 mA

5 2.626 mA /51.402°

Redrawing the network using block impedances will result in the

network of Fig. 16.13 where

Z1 5 2 kV /0° \ 6.8 kV /0° 5 1.545 kV /0°

and Z2 5 10 kV 2 j 20 kV 5 22.361 kV /263.435°

Note that I and V are still defined in Fig. 16.13.

Current divider rule:

I 5 5

5 5

5 0.176 mA /111.406°

b. V 5 IZ2

5 (0.176 mA /111.406°)(22.36 kV /263.435°)

5 3.936 V /47.971°

4.057 A /51.402°
}}}
23.093 3 103

/260.004°

4.057 A /51.402°
}}}
11.545 3 103

2 j 20 3 103

(1.545 kV /0°)(2.626 mA /51.402°)
}}}}

1.545 kV 1 10 kV 2 j 20 kV

Z1IT
}
Z1 1 Z2

Z2Z1

I

IT 2.626 mA ∠ 51.402° V

+

–

FIG. 16.13
Network of Fig. 16.12 following the

assignment of the subscripted impedances.
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a. Compute I.

b. Find I1, I2, and I3.

c. Verify Kirchhoff’s current law by showing that

I 5 I1 1 I2 1 I3

d. Find the total impedance of the circuit.

Solutions:
a. Redrawing the circuit as in Fig. 16.15 reveals a strictly parallel net-

work where

Z1 5 R1 5 10 V /0°

Z2 5 R2 1 j XL1
5 3 V 1 j 4 V

Z3 5 R3 1 j XL2
2 j XC 5 8 V 1 j 3 V 2 j 9 V 5 8 V 2 j 6 V

R2 3 V

XL1

XC
9 V

4 V

I1 I2

R1 10 V

ZT

+

–

E  =  200 V ∠ 0°

I3

YT

R3  =  8 V XL2
  =  3 VI

FIG. 16.14
Example 16.7.

I1 I2

Z1

I

+

–

E  =  200 V ∠ 0° Z2

I3

Z3

FIG. 16.15
Network of Fig. 16.14 following the assignment of the subscripted impedances.

The total admittance is

YT 5 Y1 1 Y2 1 Y3

5 1 1 5 1 1

5 0.1 S 1 1

5 0.1 S 1 0.2 S /253.13° 1 0.1 S /36.87°

5 0.1 S 1 0.12 S 2 j 0.16 S 1 0.08 S 1 j 0.06 S

5 0.3 S 2 j 0.1 S 5 0.316 S /218.435°

Calculator The above mathematical exercise presents an excellent

opportunity to demonstrate the power of some of today’s calculators.

Using the TI-86, the above operation would appear as follows on the

display:

1
}}
10 V /236.87°

1
}}
5 V /53.13°

1
}}
8 V 2 j 6 V

1
}}
3 V 1 j 4 V

1
}
10 V

1
}
Z3

1
}
Z2

1
}
Z1

EXAMPLE 16.7 For the network of Fig. 16.14:
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with the result:

Converting to polar form:

The current I:

I 5 EYT 5 (200 V /0°)(0.316 S /218.435°)

5 63.2 A /218.435°

b. Since the voltage is the same across parallel branches,

I1 5 5 5 20 A /0°

I2 5 5 5 40 A /253.13°

I3 5 5 5 20 A /136.87°

c. I 5 I1 1 I2 1 I3

60 2 j 20 5 20 /0° 1 40 /253.13° 1 20 /136.87°

5 (20 1 j 0) 1 (24 2 j 32) 1 (16 1 j 12)

60 2 j 20 5 60 2 j 20 (checks)

d. ZT 5 5

5 3.165 V /18.435°

EXAMPLE 16.8 For the network of Fig. 16.16:

1
}}}
0.316 S /218.435°

1
}
YT

200 V /0°
}}
10 V /236.87°

E
}
Z3

200 V /0°
}}
5 V /53.13°

E
}
Z2

200 V /0°
}}
10 V /0°

E
}
Z1

(300.000E23,2100.000E23)

1/(10,0)11/(3,4)11/(8,26)

Ans c Pol
(316.228E23/218.435E0)

I1I

ZT

+

–

E  =  100 V ∠ 0°

R2 9 V

R1

4 V

XC 7 V

I2

R3 8 V

XL  =  6 V

FIG. 16.16
Example 16.8.

a. Calculate the total impedance ZT.

b. Compute I.

c. Find the total power factor.

d. Calculate I1 and I2.

e. Find the average power delivered to the circuit.
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Solutions:
a. Redrawing the circuit as in Fig. 16.17, we have

Z1 5 R1 5 4 V /0°

Z2 5 R2 2 j XC 5 9 V 2 j 7 V 5 11.40 V /237.87°

Z3 5 R3 1 j XL 5 8 V 1 j 6 V 5 10 V /136.87°

I1

Z1

I

ZT

+

–

E  =  100 V ∠ 0° Z2

I2

Z3ZT1

FIG. 16.17
Network of Fig. 16.16 following the assignment of the subscripted impedances.

Notice that all the desired quantities were conserved in the redrawn

network. The total impedance:

ZT 5 Z1 1 ZT1

5 Z1 1

5

5 4 V 1 5 4 V 1 6.69 V /2.37°

5 4 V 1 6.68 V 1 j 0.28 V 5 10.68 V 1 j 0.28 V

ZT 5 10.684 V /1.5°

Mathcad Solution: The complex algebra just presented in detail

provides an excellent opportunity to practice our Mathcad skills with

complex numbers. Remember that the j must follow the numerical value

of the imaginary part and is not multiplied by the numerical value.

Simply type in the numerical value and then j. Also recall that unless

you make a global change in the format, an i will appear with the imag-

inary part of the solution. As shown in Fig. 16.18, each impedance is

first defined with Shift:. Then each impedance is entered in sequence

on the same line or succeeding lines. Next, the equation for the total

impedance is defined using the brackets to ensure that the bottom sum-

mation is carried out before the division and also to provide the same

format to the equation as appearing above. Then enter ZT, select the

equal sign key, and the rectangular form for the total impedance will

appear as shown.

The polar form can be obtained by first going to the Calculator

toolbar to obtain the magnitude operation and inserting ZT as shown in

Fig. 16.18. Then selecting the equal sign will result in the magnitude

of 10.693 V. The angle is obtained by first going to the Greek toolbar

and picking up theta, entering T, and defining the variable. The p

comes from the Calculator toolbar, and the arg( ) from Insert-f(x)-

114 V /21.00°
}}
17.03 /23.37°

4 V 1 (11.4 V /237.87°)(10 V /36.87°)
}}}}}

(9 V 2 j 7 V) 1 (8 V 1 j 6 V)

Z2Z3
}
Z2 1 Z3
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(4,0)1((9,27)1(8,6))21* (11.4/237.87)(10/36.87)  ENTER
(10.689E0,276.413E23)
Ans c Pol ENTER
(10.692E0/1.481E0)

b. I 5 5 5 9.36 A /21.5°

c. Fp 5 cos vT 5 5 > 1

(essentially resistive, which is interesting, considering the complex-

ity of the network)

10.68 V
}}
10.684 V

R
}
ZT

100 V /0°
}}
10.684 V /1.5°

E
}
ZT

Function Name-arg. Finally the variable is written again and the

equal sign selected to obtain an angle of 1.478°. The computer solu-

tion of 10.693 V /1.478° is an excellent verification of the theoreti-

cal solution of 10.684 V /1.5°.

Calculator Another opportunity to demonstrate the versatility of the

calculator! For the above operation, however, one must be aware of the

priority of the mathematical operations, as demonstrated in the calcula-

tor display below. In most cases, the operations are performed in the

same order they would be performed longhand.

FIG. 16.18
Using Mathcad to determine the total impedance for the network of Fig.16.16.
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d. Current divider rule:

I2 5 5

5 5

I2 5 6.27 A /236°

Applying Kirchhoff’s current law (rather than another application of

the current divider rule) yields

I1 5 I 2 I2

or I 5 I1 2 I2

5 (9.36 A /21.5°) 2 (6.27 A /236°)

I 5 (9.36 A 2 j 0.25 A) 2 (5.07 A 2 j 3.69 A)

I1 5 4.29 A 1 j 3.44 A 5 5.5 A /38.72°

e. PT 5 EI cos vT

5 (100 V)(9.36 A) cos 1.5°

5 (936)(0.99966)

PT 5 935.68 W

16.3 LADDER NETWORKS
Ladder networks were discussed in some detail in Chapter 7. This sec-

tion will simply apply the first method described in Section 7.3 to the gen-

eral sinusoidal ac ladder network of Fig. 16.19. The current I6 is desired.

106.7 A /239.37°
}}}

17.03 /23.37°

106.7 A /239.37°
}}}

17 2 j 1

(11.40 V /237.87°)(9.36 A /21.5°)
}}}}

(9 V 2 j 7 V) 1 (8 V 1 j 6 V)

Z2I
}
Z2 1 Z3

Z2

+

–

E  =  120 V ∠ 0° Z4

I6

Z6

Z1 Z3 Z5

FIG. 16.19
Ladder network.

Impedances ZT, Z′T, and Z″T and currents I1 and I3 are defined in

Fig. 16.20:

Z″T 5 Z5 1 Z6

and Z′T 5 Z3 1 Z4 \ Z″T

with ZT 5 Z1 1 Z2 \ Z′T

Then I 5

and I3 5

with I6 5
Z4I3

}}
Z4 1 Z″T

Z2I
}
Z2 1 Z′T

E
}
ZT
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Z2

+

–

E  =  120 V ∠ 0° Z4

I6

Z6

Z1 Z3 Z5

I

Z0TZ9TZT

I3

FIG. 16.20
Defining an approach to the analysis of ladder networks.

16.4 APPLICATIONS
The vast majority of the applications appearing throughout the text have

been of the series-parallel variety. The following are simply two more

that include series-parallel combinations of elements and systems to

perform important everyday tasks. The ground fault interrupter (GFI)

outlet employs series protective switches and sensing coils and a paral-

lel control system, while the ideal equivalent circuit for the coax cable

employs a series-parallel combination of inductors and capacitors.

GFI (Ground Fault Interrupter)
The National Electric Code, the “bible” for all electrical contractors,

now requires that ground fault interrupter (GFI) outlets be used in any

area where water and dampness could result in serious injury, such as

in bathrooms, pools, marinas, and so on. The outlet looks like any other

except that it has a reset button and a test button in the center of the unit

as shown in Fig. 16.21(a). Its primary difference between an ordinary

outlet is that it will shut the power off much more quickly than the

breaker all the way down in the basement could. You may still feel a

shock with a GFI outlet, but the current will cut off so quickly (in a few

milliseconds) that a person in normal health should not receive a seri-

ous electrical injury. Whenever in doubt about its use, remember that

the cost is such that it should be installed. It works just as a regular out-

let does, but it provides an increased measure of safety.

The basic operation is best described by the simple network of Fig.

16.21(b). The protection circuit separates the power source from the

outlet itself. Note in Fig. 16.21(b) the importance of grounding the pro-

tection circuit to the central ground of the establishment (a water pipe,

ground bar, and so on, connected to the main panel). In general, the out-

let will be grounded to the same connection. Basically, the network

shown in Fig. 16.21(b) senses both the current entering (Ii) and the cur-

rent leaving (Io) and provides a direct connection to the outlet when

they are equal. If a fault should develop such as caused by someone

touching the hot leg while standing on a wet floor, the return current

will be less than the feed current (just a few milliamperes is enough).

The protection circuitry will sense this difference, establish an open cir-

cuit in the line, and cut off the power to the outlet.

In Fig. 16.22(a) you can see the feed and return lines passing

through the sensing coils. The two sensing coils are separately con-

nected to the printed circuit board. There are two pulse control switches

in the line and a return to establish an open circuit under errant condi-
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tions. The two contacts in Fig. 16.22(a) are the contacts that provide

conduction to the outlet. When a fault develops, another set of similar

contacts in the housing will slide away, providing the desired open-

circuit condition. The separation is created by the solenoid appearing

in Fig. 16.22(b). When the solenoid is energized due to a fault condi-

tion, it will pull the plunger toward the solenoid, compressing the

spring. At the same time, the slots in the lower plastic piece (connected

directly to the plunger) will shift down, causing a disconnect by mov-

ing the structure inserted in the slots. The test button is connected to the

brass bar across the unit in Fig. 16.22(c) below the reset button. When

pressed, it will place a large resistor between the line and ground to

“unbalance” the line and cause a fault condition. When the button is

released, the resistor will be separated from the  line, and the unbalance

condition will be removed. The resistor is actually connected directly to

one end of the bar and moves down with pressure on the bar as shown

in Fig. 16.22(d). Note in Fig. 16.22(c) how the metal ground connection

passes right through the entire unit and how it is connected to the

ground terminal of an applied plug. Also note how it is separated from

the rest of the network with the plastic housing. Although this unit

 !"

120 V

Ii

+

–
Io

Sensing
coils

Op-Amp

Op-Amp

Pulse solenoid switch Mechanical
reset

Test
button
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(c)

GFI
logic
Chip

GFI

GFI
protection
network

L1 (hot, feed)

GND

L2 (return, neutral)

Ii

Io

(b)

FIG. 16.21
GFI outlet: (a) wall-mounted appearance; (b) basic operation; (c) schematic.



FIG. 16.22
GFI construction: (a) sensing coils; (b) solenoid control (bottom view); 

(c) grounding (top view); (d) test bar.
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appears simple on the outside and is relatively small in size, it is beau-

tifully designed and contains a great deal of technology and innovation.

Before leaving the subject, note the logic chip in the center of Fig.

16.22(a) and the various sizes of capacitors and resistors. Note also the

four diodes in the upper left region of the circuit board used as a bridge

rectifier for the ac-to-dc conversion process. The transistor is the black

element with the half-circle appearance. It is part of the driver circuit for

the controlling solenoid. Because of the size of the unit, there wasn’t a lot

of room to provide the power to quickly open the circuit. The result is the

use of a pulse circuit to control the motion of the controlling solenoid. In

other words, the solenoid is pulsed for a short period of time to cause the

required release. If the design used a system that would hold the circuit

open on a continuing basis, the power requirement would be greater and

the size of the coil larger. A small coil can handle the required power

pulse for a short period of time without any long-term damage.

As mentioned earlier, if unsure, then install a GFI. It provides a mea-

sure of safety—at a very reasonable cost—that should not be ignored.

Coax Cable
In recent years it appears that coax cable is everywhere, from TV con-

nections to medical equipment, from stereos to computer connections.

What makes this type of connection so special? What are its advantages

over the standard two-wire connection?

The primary purpose of coax cable is to provide a channel for com-

munication between two points without picking up noise from the sur-

rounding medium—a direct link in its purest form. You may wonder

whether noise pollution is really that bad and whether this concern is

overkill, but simply think of all the signals passing through the air that we

cannot see, for example, for cellular phones, pagers, and radio and TV

stations. Then you start to realize that there is a lot going on out there that

we can’t see. None of us would like our EKG signal from our heart to be

disturbed by extraneous noise or to have our stereo pick up channels

other than those of interest. It is a real problem that must be solved, and

it appears that the best solution is to use coax cable. Compared to stan-

dard conductors, coax displays a lower loss of signal in transmission and

has much improved high-frequency transmission characteristics.

It is the construction that offers the protection we desire. The basic

construction of a 75-V coax cable as typically used in the home appears

in Fig. 16.23(a) with its terminal connection in Fig. 16.23(b). It has a

FIG. 16.23
75-V coax cable: (a) construction; (b) terminal connection.

 !"

#$!%&'(

)!&*+,+--.

/!(0*&

#-$1*&21$*3*

45 678

9:-.-'$

%2'*$;

6$:<'3:<

=+!';

 ="



APPLICATIONS  725

solid inner conductor surrounded by a polyethylene dielectric (insula-

tor). Copper or aluminum braid woven over the dielectric forms the

outer conductor. Finally, a waterproof jacket placed over the braided

wire provides protection against moisture. Since the entire outer surface

of the braided wire is at the same potential, it completely isolates the

solid conductor in the center of the coax cable from the outside sig-

nals—an isolation referred to as shielding. The question is sometimes

asked, Why is the outside wire braided rather than just a flat sheet of

conducting material? It is braided to reduce the effects of the fields

established by any currents that pass through the outside conductor. In

Fig. 16.24(a), a current in the outer conductor has established circular

magnetic fields that can be additive and can create transmission prob-

lems. However, as shown in Fig. 16.24(b), if the wire is braided, the

magnetic field established by one wire in the braid may be canceled by

a neighboring conductor crossing the conductor on an angle. Note the

opposite direction of the fields in the region between the two braided

wires. Of course, the total magnetic flux may not be canceled, but the

situation is certainly improved compared to that with a solid flat con-

ductor. For added protection, a duofoil covering is sometimes added as

shown in Fig. 16.23(a) to ensure 100% shielding.

Because a coax cable is most commonly referred to as an RF (radio-

frequency) transmission line, most people associate the use of coax

cables with high frequencies. However, this is certainly not the case, as

evidenced by medical technology that deals with static dc levels and

low-voltage (in microvolts or millivolts), “slow” (less than 5 Hz) ac. In

general, coax cables should be used wherever there is a need to ensure

that the transmitted signal is undisturbed by any surrounding noise.

Coax cables are acceptable for the full range of frequencies from 0 Hz

to a few hundred gigahertz, with sound frequencies extending from

about 15 Hz to 20 kHz, radio frequencies from 20 kHz to 300 MHz,

and microwave frequencies from 300 MHz to 300 GHz. Our discussion

thus far has centered on protecting the transmitted signal from external

noise. It is important to realize also that when a coax cable is used, it

will not act as a transmitter for the signal that it is carrying. This fact is

very important as we hook up electronic appliances such as VCRs to

our TVs. If we simply used a twin lead wire between the VCR and TV,

not only would the wire pick up signals by acting like an antenna, but

it would also transmit channel 3 (or 4) to the surrounding medium

FIG. 16.24
Shielding: (a) solid outside inductor; (b) braided outside conductor.
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L L L

C C CZcharacteristic

L L L

(a)

(b)

Zc

RG-58U

50 ΩZc

RG-59U

75 Ω

FIG. 16.25
Coax cable: (a) electrical equivalent (lossless line); (b) characteristic

impedance.

which would affect not only your TV’s response but also that of any

other TV or receiver in the area.

For the coupling between the systems in which coax cable is typi-

cally used, it is not the level of voltage or current that is the primary

concern but whether there is a good “match” between components and

the cable. Every transmission line composed of two parallel conductors

will have capacitance between the conductors, and every conductor that

is carrying current has a certain level of inductance. For a transmission

line an equivalent model can be composed of the lumped series-parallel

combination of Fig. 16.25(a), where each capacitor or inductor is for a

short length of the wire. For an infinitely long chain of the elements of

Fig. 16.25(a), the combination has an input impedance called the char-

acteristic impedance that is proportional to ÏLw/Cw where L and C are

the inductance and capacitance of a unit length of the transmission line.

Although Figure 16.25(a) suggests that a transmission line is purely

reactive, there is resistance in the line because of the resistance of the

wire, and this resistance will absorb power. It is therefore important to

realize when hooking up coax cable that the TV farthest from the

source will receive the least amount of signal power, and if it is very

distant, the resulting loss may be sufficient to affect the picture quality.

Rearranging the equations for vL and IC and substituting as follows will

reveal that the characteristic impedance is purely resistive and is mea-

sured in ohms:
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The most common coax cables have characteristic impedances of

either 50 V or 75 V, as shown in Fig. 16.25(b). In actuality they may

be 53.5-V and 73.5-V lines, respectively, but they are usually grouped

in the category of 50- or 75-V lines. The 75-V line is typically used for

applications such as cable TV and RF equipment, while the 50-V line

is typically used for test equipment, ham radio stations, and medical

equipment. Two of the most common coax cables are listed in Table

16.1 with specific information about their characteristics.

TABLE 16.1
Characteristics of two frequently used coax cables.

RG-59U 75 V (actually 73.5 V) RG-58U 50 V (actually 53.5 V)

Core wire: 20 AWG, 40% aluminum 20 AWG, 95% tinned 

Resistance: 44.5 V/1000 ft 10 V/1000 ft

Coating: Duofoil, 100% shield coverage Polyethylene

PVC jacket: 0.237-in. outside diameter 0.193-in. outside diameter

Capacitance: 16.2 pF/ft 28.5 pF/ft

Losses: 1 MHz, 0.8 dB/100 ft 1 MHz, 0.3 dB/100 ft

10 MHz, 1 dB/100 ft 10 MHz, 1.1 dB/100 ft

50 MHz, 1.8 dB/100 ft 50 MHz, 2.5 dB/100 ft

100 MHz, 2.5 dB/100 ft 100 MHz, 3.8 dB/100 ft

1 GHz, 7.9 dB/100 ft 1 GHz, 14.5 dB/100 ft

In reality, a transmission line will not be infinite in length as required

for the definition of characteristic impedance. The result is that a 20-ft

length of 75-V cable will not have an input impedance of 20 V but

rather one that is determined by the load applied to the cable. However,

if the transmission line is terminated by a resistance of 75 V, the char-

acteristic impedance of 75 V will appear at the source. In other words,

terminating a coax cable by its characteristic impedance will make it

appear as an infinite line to the source. When the applied load equals

the characteristic impedance of the line, the line is said to be matched.

An applied load equal to the characteristic impedance also results in

maximum power transfer to the load as established by the maximum

power theorem. Any loading other than the characteristic impedance

will result in a “reflection of power” back to the source. Matching the

load to the line is therefore a major concern when using coax cables.

For instance, take the folded-dipole antenna referred to as a yagi that

was a common sight on roof tops before cable came along. The twin

line cable running from the antenna to the TV had a characteristic

impedance of 300 V. Today, most TVs have an input impedance of

75 V, and thus such antennas would have to be connected to the TV

with a matching transformer (called a Balun transformer) that would

make the 75-V load look like 300 V to the antenna for maximum power

transfer, as shown in Fig. 16.26. In today’s world, TVs are referred to

as cable ready if they have a coax connection and an input impedance

of 75 V to match the cable system.

One of the mistakes frequently made when installing a coax system

is to hook up a splitter and fail to terminate all the output terminals. In

Fig. 16.27(a), a three-way splitter is connected to two TVs with the

third terminal left open for any possible future additions. The open third

terminal will cause a mismatch on the incoming line, and less power
FIG. 16.26

Balun matching transformer.

 !! "

#$ "



728  SERIES-PARALLEL ac NETWORKS

will get to the connected TVs. This situation is corrected by terminat-

ing the unused terminal with a commercially available connector as

shown in Fig. 16.27(b), which simply has a 75-V resistor inside. It is

also important to realize that each time you split the signal, you lose

power to each of the TVs connected to the system. In fact, you lose

3 dB for each split as shown in Fig. 16.28(a). Splitting the signal in two

will result in a loss of 3 dB for each TV, while splitting it three ways

will result in a 6-dB loss for each TV. The concept of decibels will be

covered in Chapter 24, but be aware for the moment that a 3-dB drop

represents a drop in power of one-half—certainly a significant amount.

A TV can still respond pretty well with a drop of 3 dB or 6 dB, but any-

thing approaching a 12-dB drop will probably result in a poor image

and should be avoided. Whenever using a splitter, it is always best to

connect an amplifier before the splitter as shown in Fig. 16.28(b). In

essence, the amplifier compensates for the loss introduced by splitters

and also (if well designed) will permit leaving a terminal open without

disturbing the resulting signal power flow. In other words, a good

Unterminated
connection

75-Ω cable

Output
Three-way

splitter

Input

75-Ω cable

75-Ω cable

(a)

 !"

FIG. 16.27
Signal splitting: (a) three-way splitter; (b) F-type 75-V coax terminator.
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FIG. 16.28
Coax splitting losses: (a) dB losses introduced by two-way and three-way

splitters; (b) using an amplifier.
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amplifier knows how to compensate for a terminal that is improperly

terminated.

Table 16.1 reveals that there is a measurable loss in power (dB) for

every 100 ft of cable. For each cable, about 3 dB are lost for every 100 ft

at 100 MHz, primarily because of the resistance of the center conduc-

tor (44.5 V/1000 ft for the 75-V line and 10 V/1000 ft for the 50-V

line). This is one reason why it is not recommended to first split the sig-

nal and apply the amplifier at the location of the TV. In Fig. 16.29(a),

the signal-to-noise (unwanted signals) ratio is quite high, and the recep-

tion will be quite good. However, as shown in Fig. 16.29(b), if the sig-

nal is sent down a 100-ft cable to a room distant from the source, there

will be a drop in signal, and even if the noise component does not

increase, the signal-to-noise ratio at the TV will be much higher. If an

amplifier is connected at this point, it will amplify both the signal and

the unwanted noise, and the poorer signal-to-noise ratio will be fed to

the TV, resulting in a poorer reception. In general, therefore, amplifiers

should be applied where the signal-to-noise ratio is the highest.

Signal

Noise

V

0
t

Source

Signal/noise ratio (SNR)
excellent Signal

Noise

V

0
t

Source

SNR
deteriorating

100′+

(a) (b)

Wall
outlet

Wall
outlet

FIG. 16.29
Signal-to-noise ratios: (a) negligible line loss; (b) measurable line loss.

The discussion of coax cables and their proper use could go on for a

number of pages. Priorities, however, require that any further investiga-

tion be left to the reader. Simply be aware that the matching process is

an important one and that coax cables are not ideal systems and do have

an internal resistance that can affect transmission—especially over long

distances.

16.5 COMPUTER ANALYSIS
PSpice
ac Bridge Network We will be using Example 16.4 to demonstrate

the power of the VPRINT option in the SPECIAL library. It permits a

direct determination of the magnitude and angle of any voltage in an ac

network. Similarly the IPRINT option does the same for ac currents. In

Example 16.4, the ac voltages across R1 and R2 were first determined,

and then Kirchhoff’s voltage law was applied to determine the voltage

between the two known points. Since PSpice is designed primarily to

determine the voltage at a point with respect to ground, the network of

Fig. 16.7 is entered as shown in Fig. 16.30 to permit a direct calculation

of the voltages across R1 and R2.

The source and network elements are entered using a procedure that

has been demonstrated several times in previous chapters, although for



730  SERIES-PARALLEL ac NETWORKS

the AC Sweep analysis to be performed in this example, the source

mustcarryanAC levelalso.Fortunately, it is thesameasVAMPLasshown

in Fig. 16.30. It is introduced into the source description by double-

clicking on the source symbol to obtain the Property Editor dialog

box. The AC column is selected and the 100 V entered in the box

below. Then Display is selected and Name and Value chosen. Click

OK followed by Apply, and you can exit the dialog box. The result is

AC 5 100 V added to the source description on the diagram and in the

system. Using the reactance values of Fig. 16.7, the values for L and C

were determined using a frequency of 1 kHz. The voltage across R1 and

R2 can be determined using the Trace command in the same manner as

described in the previous chapter or by using the VPRINT option. Both

approaches will be discussed in this section because they have applica-

tion to any ac network.

The VPRINT option is under the SPECIAL library in the Place

Part dialog box. Once selected, the printer symbol will appear on the

screen next to the cursor, and it can be placed near the point of interest.

Once the printer symbol is in place, a double-click on it will result in

the Property Editor dialog box. Scrolling from left to right, type the

word ok under AC, MAG, and PHASE. When each is active, the Dis-

play key should be selected and the option Name and Value chosen

followed by OK. When all the entries have been made, choose Apply

and exit the dialog box. The result appears Fig. 16.30 for the two appli-

cations of the VPRINT option. If you prefer, VPRINT1 and VPRINT2

can be added to distinguish between the two when you review the out-

put data. This is accomplished by returning to the Property Editor dia-

log box for each by double-clicking on the printer symbol of each and

FIG. 16.30
Determining the voltage across R

1
and R

2
using the VPRINT option of a

PSpice analysis.
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selecting Value and then Display followed by Value Only. We are now

ready for the simulation.

The simulation is initiated by selecting the New Simulation Profile

icon and entering ACSweep as the Name. Then select Create to bring

up the Simulation Settings dialog box. This time, we want to analyze

the network at 1 kHz but are not interested in plots against time. Thus,

the AC Sweep/Noise option will be selected under Analysis type in the

Analysis section. An AC Sweep Type region will then appear in the

dialog asking for the Start Frequency. Since we are interested in the

response at only one frequency, the Start and End Frequency will be

the same: 1 kHz. Since we need only one point of analysis, the

Points/Decade will be 1. Click OK, and the Run PSpice icon can be

selected. The SCHEMATIC1 screen will appear, and the voltage across

R1 can be determined by selecting Trace followed by Add Trace and

then V(R1:1). The result is the bottom display of Fig. 16.31 with only

one plot point at 1 kHz. Since we fixed the frequency of interest at 1

kHz, this is the only frequency with a response. The magnitude of the

voltage across R1 is 60 V to match the longhand solution of Example

16.4. The phase angle associated with the voltage can be determined by

the sequence Plot-Add Plot to Window-Trace-Add Trace-P( ) from

the Functions or Macros list and then V(R1:1) to obtain P(V(R1:1))

in the Trace Expression box. Click OK, and the resulting plot shows

that the phase angle is near just less than 250° which is certainly a

close match with the 253.13° obtained in Example 16.4.

The above process made no use of the new VPRINT option just

introduced. We will now see what this option provides. When the

SCHEMATIC1 window appears after the simulation, the window

should be exited using the X, and PSpice should be selected on the top

FIG. 16.31
The resulting magnitude and phase angle for the voltage VR1

of Fig. 16.30.
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menu bar of the resulting screen. A list will appear of which View Out-

put File is an option. Selecting this option will result in a long list of

data about the construction of the network and the results obtained from

the simulation. In Fig. 16.32 the portion of the output file listing the

resulting magnitude and phase angle for the voltages defined by

VPRINT1 and VPRINT2 is provided. Note that the voltage across R1

defined by VPRINT1 is 60 V at an angle of 53.13°. The voltage across

R2 as defined by VPRINT2 is 80 V at an angle of 36.87°. Both are

exact matches of the solutions of Example 16.4. In the future, therefore,

if the VPRINT option is used, the results will appear in the output file.

Now we will determine the voltage across the two branches from

point a to point b. Return to SCHEMATIC1, and select Trace fol-

lowed by Add Trace to obtain the list of Simulation Output Vari-

ables. Then, by applying Kirchhoff’s voltage law around the closed

loop, we find that the desired voltage is V(R1:1)-V(R2:1) which when

followed by OK will result in the plot point in the screen in the bot-

tom of Fig. 16.33. Note that it is exactly 100 V as obtained in the

longhand solution. The phase angle can then be determined through

Plot-Add Plot to Window-Trace-Add Trace and creating the expres-

sion P(V(R1:1)-V(R2:1)). Remember that the expression can be gen-

erated using the lists of Output variables and Functions, but it can

FIG. 16.32
The VPRINT1 (VR1

) and VPRINT2 (VR2
) response for the network of Fig. 16.30.
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also be simply typed in from the keyboard. However, always be sure

that there are as many left parentheses as there are right. Click OK, and

a solution near 2105° appears. A better reading can be obtained by

using Plot-Axis Settings-Y Axis-User Defined and changing the scale

to 2100° to 2110°. The result is the top screen of Fig. 16.33 with an

angle closer to 2106.5° or 73.5° which is very close to the theoretical

solution of 73.74°.

Finally, the last way to find the desired bridge voltage is to remove

the VPRINT2 option and place the ground at that point as shown in

Fig. 16.34. Now the voltage generated from a point above R1 to ground

will be the desired voltage. Repeating a full simulation will then result

in the plot of Fig. 16.35 with the the same results as Fig. 16.33. Note,

however, that even though the two figures look the same, the quantities

listed in the bottom left of each plot are different.

Electronics Workbench
Electronics Workbench will now be used to determine the voltage

across the last element of the ladder network of Fig. 16.36. The mathe-

matical content of this chapter would certainly suggest that this analy-

sis would be a lengthy exercise in complex algebra, with one mistake (a

single sign or an incorrect angle) enough to invalidate the results. How-

ever, it will take only a few minutes to “draw” the network on the

screen and only a few seconds to generate the results—results you can

usually assume are correct if all the parameters were entered correctly.

The results are certainly an excellent check against a longhand solution.

FIG. 16.33
The PSpice reponse for the voltage between the two points above resistors 

R1 and R2.
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FIG. 16.34
Determining the voltage between the two points above resistors R1 and R2 by

moving the ground connection of Fig. 16.30 to the position of VPRINT2.

FIG. 16.35
PSpice response to the simulation of the network of Fig. 16.34.
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Our first approach will be to use an oscilloscope to measure the

amplitude and phase angle of the output voltage as shown in Fig. 16.36.

Note that five nodes are defined, with node 5 the desired voltage. The

oscilloscope settings include a Time base of 20 ms/div. since the period

of the 10-kHz signal is 100 ms. Channel A was set on 10 V/div. so that

the full 20 V of the applied signal will have a peak value encompassing

two divisions. Note that Channel A in Fig. 16.36 is connected directly

to the source Vs and to the Trigger input for synchronization. Expect-

ing the output voltage to have a smaller amplitude resulted in a vertical

sensitivity of 1 V/div. for Channel B. The analysis was initiated by

placing the Simulation switch in the 1 position. It is important to real-

ize that

when simulation is initiated, it will take time for networks with

reactive elements to settle down and for the response to reach its

steady-state condition. It is therefore wise to let a system run for a

while after simulation before selecting Single on the oscilloscope to

obtain a steady waveform for analysis.

The resulting plots of Fig. 16.37 clearly show that the applied voltage

has an amplitude of 20 V and a period of 100 ms (5 div. at 20 ms/div).

The cursors sit ready for use at the left and right edges of the screen.

Clicking on the small red arrow (with number 1) at the top of the oscil-

loscope screen will permit you to drag it to any location on the hori-

zontal axis. As you move the cursor, the magnitude of each waveform

will appear in the T1 box below. By comparing positive slopes through

the origin, you should see that the applied voltage is leading the output

voltage by an angle that is more than 90°. Setting the cursor at the

FIG. 16.36
Using the oscilloscope of Electronics Workbench to determine the voltage

across the capacitor C2.
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point where the output voltage on channel B passes through the origin

with a positive slope, we find that we cannot achieve exactly 0 V; but

2313.4 mV 5 20.313 mV (VB1) is certainly very close at 39.7 ms

(T1).

Knowing that the applied voltage passed through the origin at 0 ms

permits the following claculation for the phase angle:

5
v

}
360°

39.7 ms
}
100 ms

FIG. 16.37
Using Electronics Workbench to display the applied voltage and voltage across

the capacitor C2 for the network of Fig. 16.36.

v 5 142.92°

with the result that the output voltage has an angle of 2142.92° associ-

ated with it. The second cursor is found at the right edge of the screen

and has a blue color. Selecting it and moving it to the peak value of the

output voltage results in VB2 5 1.2 V at 65.7 ms (T2). The result of all

the above is 

VC2
5 1.2 V /2142.92°.

Our second approach will be to use the AC Analysis option under

the Simulate heading. First, realize that when we were using the oscil-

loscope as we did above, there was no need to pass through the

sequence of dialog boxes to choose the desired analysis. All that was

necessary was to simulate using either the switch or the PSpice-Run

sequence—the oscilloscope was there to measure the output voltage.

Remember that the source defined the magnitude of the applied voltage,

the frequency, and the phase shift. This time we will use the sequence
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Simulate-Analyses-AC Analysis to obtain the AC Analysis dialog box

in which the Start and Stop frequencies will be 10 kHz and the

Selected variable for analysis will be node 5 only. Selecting Simulate

will then result in a magnitude-phase plot with no apparent indicators at

10 kHz. However, this is easily corrected by first selecting one of the

plots by clicking on the Voltage label at the left of the plot. Then select

the Show/Hide Grid, Show/Hide Legend, and Show/Hide Cursors

keys to obtain the cursors, legend, and AC Analysis dialog box. Hook on

the red cursor and move it to 10 kHz. At that location, and that location

only, x1 will appear as 10 kHz in the dialog box, and y1 will be 1.1946

as shown in Fig. 16.38. In other words, the cursor has defined the mag-

nitude of the voltage across the output capacitor as 1.1946 V or approx-

imately 1.2 V as obtained above. If you then select the Phase curve and

repeat the procedure, you will find that at 10 kHz (x1) the angle is

2142.15° (y1) which is very close to the 2142.92° obtained above.

FIG. 16.38
Using the AC Analysis option under Electronics Workbench to determine 

the magnitude and phase angle for the voltage VC2
for the network of 

Fig. 16.36.

In total, therefore, we have two methods to obtain an ac voltage in a

network—one by instrumentation and the other through the computer

methods. Both are valid, although, as expected, the computer approach

has a higher level of accuracy.
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PROBLEMS
SECTION 16.2 Illustrative Examples

1. For the series-parallel network of Fig. 16.39:

a. Calculate ZT.

b. Determine I.

c. Determine I1.

d. Find I2 and I3.

e. Find VL.

I

+ –

E  =  12 V ∠ 0°

8 V

ZT

VL XC1

12 VXC2

I1 I2

I3

+

–

XL  =  6 V

FIG. 16.39
Problems 1 and 19.

2. For the network of Fig. 16.40:

a. Find the total impedance ZT.

b. Determine the current Is.

c. Calculate IC using the current divider rule.

d. Calculate VL using the voltage divider rule.

R2

2 V
+ –

E  =  30 V ∠ 0° 8 V

ZT

VL

XCIs

IC

+

–

XL  =  6 V

R1

3 V

FIG. 16.40
Problems 2 and 15.

3. For the network of Fig. 16.41:

a. Find the total impedance ZT and the total admittance

YT.

b. Find the current Is.

c. Calculate I2 using the current divider rule.

d. Calculate VC.

e. Calculate the average power delivered to the network.

Is

+

–

E  =  60 V ∠ 30° R1 4.7 V

R2 9.1 V

XC  =  12 VVC

+

–

ZT

YT

I2

FIG. 16.41
Problems 3 and 20.
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4. For the network of Fig. 16.42:

a. Find the total impedance ZT.

b. Calculate the voltage V2 and the current IL.

c. Find the power factor of the network.

5. For the network of Fig. 16.43:

a. Find the current I.

b. Find the voltage VC.

c. Find the average power delivered to the network.

+  V2 –

R2  =  8 V

I  =  5 A ∠ 0°

4 V

ZT

XC

IL

+

–

 6 V

R1

2 V R3  =  8 V

XL2
  =  3 V

XL1

FIG. 16.42
Problem 4.

R1 560 V
+

–

E  =  100 V ∠ 0°
+

–

XL

I

560 V VC

R2 200 V

XC2
  =  400 VXC1

  =  400 V

FIG. 16.43
Problems 5 and 21.

*6. For the network of Fig. 16.44:

a. Find the current I1.

b. Calculate the voltage VC using the voltage divider rule.

c. Find the voltage Vab.

*7. For the network of Fig. 16.45:

a. Find the current I1.

b. Find the voltage V1.

c. Calculate the average power delivered to the network.

FIG. 16.44
Problem 6.

R1 3 V

XL1
4 V

I1

Vaba b

XC 13 V
+

–

E  =  120 V ∠ 60°

XL2
7 V

VC

+

–

FIG. 16.45
Problems 7 and 16.

V1

XC

60 V

XL  =  80 V

I1

R2

20 V+

–

E  =  40 V ∠ 0°
+

–

R1

10 V
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8. For the network of Fig. 16.46:

a. Find the total impedance ZT and the admittance YT.

b. Find the currents I1, I2, and I3.

c. Verify Kirchhoff’s current law by showing that Is 5

I1 1 I2 1 I3.

d. Find the power factor of the network, and indicate

whether it is leading or lagging.

*9. For the network of Fig. 16.47:

a. Find the total admittance YT.

b. Find the voltages V1 and V2.

c. Find the current I3.

I1Is

ZT

+

–

E  =  60 V ∠ 0°

1 V

XC 7 V

I2

R2 3 V

XL1

YT

R3 16 V

R1 2 V

15 V

XL2

I3

FIG. 16.46
Problem 8.

*10. For the network of Fig. 16.48:

a. Find the total impedance ZT and the admittance YT.

b. Find the source current Is in phasor form.

c. Find the currents I1 and I2 in phasor form.

d. Find the voltages V1 and Vab in phasor form.

e. Find the average power delivered to the network.

f. Find the power factor of the network, and indicate

whether it is leading or lagging.

+

–
I  =  3 A ∠ 30°

I3
– V1 +

R1  =  6.8 V

R3

3 V

4 V

XC1

R4

3 V

4 V

XC2

7 V XL V2 R2  =  8.2 V

YT

FIG. 16.47
Problem 9.

is

ZT
+

–

e  = =2(50) sin 2p 1000t

L1  =  0.1 H

i1

YT

R1

300 V
a

b

vab

i2

C 1 mF v1

+

–
L2  =  0.2 H

FIG. 16.48
Problem 10.
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*11. Find the current I for the network of Fig. 16.49.

XC1

9 V

XL

I

R3
10 V

+

–

E  =  50 V ∠ 0°

R1

2 V

6 V

XC2

2 V

R2

3 V

FIG. 16.49
Problems 11 and 17.

SECTION 16.3 Ladder Networks
12. Find the current I5 for the network of Fig. 16.50. Note

the effect of one reactive element on the resulting calcu-

lations.

13. Find the average power delivered to R4 in Fig. 16.51.

I5

E  =  100 V ∠ 0° XC 20 VR4 20 VR2 20 V

R1

12 V

R3

12 V

R5

12 V

+

–

FIG. 16.50
Problem 12.

I  =  20 mA ∠ 0°

XC

10 V

R1 40 kV

R3

2.7 kV

R2 3 kV R4 4.3 kV

FIG. 16.51
Problem 13.

I  =  0.5 A ∠ 0° XC1
2 V

8 V

R1 1 VXC2
2 V

XL2

8 V

XL1

I1

FIG. 16.52
Problems 14 and 18.

14. Find the current I1 for the network of Fig. 16.52.
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SECTION 16.5 Computer Analysis
PSpice or Electronics Workbench
For Problems 15 through 18, use a frequency of 1 kHz to

determine the inductive and capacitive levels required for the

input files. In each case write the required input file.

*15. Repeat Problem 2 using PSpice or EWB.

*16. Repeat Problem 7, parts (a) and (b), using PSpice or

EWB.

*17. Repeat Problem 11 using PSpice or EWB.

*18. Repeat Problem 14 using PSpice or EWB.

Programming Language (C11, QBASIC, Pascal, etc.)
19. Write a program to provide a general solution to Problem

1; that is, given the reactance of each element, generate a

solution for parts (a) through (e).

20. Given the network of Fig. 16.41, write a program to gen-

erate a solution for parts (a) and (b) of Problem 2. Use

the values given.

21. Generate a program to obtain a general solution for the

network of Fig. 16.43 for the questions asked in parts (a)

through (c) of Problem 2. That is, given the resistance

and reactance of the elements, determine the requested

current, voltage, and power.

GLOSSARY
Ladder network A repetitive combination of series and par-

allel branches that has the appearance of a ladder.

Series-parallel ac network A combination of series and par-

allel branches in the same network configuration. Each

branch may contain any number of elements whose imped-

ance is dependent on the applied frequency.



17

17.1 INTRODUCTION
For networks with two or more sources that are not in series or parallel,

the methods described in the last two chapters cannot be applied.

Rather, methods such as mesh analysis or nodal analysis must be

employed. Since these methods were discussed in detail for dc circuits

in Chapter 8, this chapter will consider the variations required to apply

these methods to ac circuits. Dependent sources will also be introduced

for both mesh and nodal analysis.

The branch-current method will not be discussed again because it

falls within the framework of mesh analysis. In addition to the methods

mentioned above, the bridge network and D-Y, Y-D conversions will

also be discussed for ac circuits.

Before we examine these topics, however, we must consider the sub-

ject of independent and controlled sources.

17.2 INDEPENDENT VERSUS DEPENDENT(CONTROLLED) SOURCES
In the previous chapters, each source appearing in the analysis of dc or

ac networks was an independent source, such as E and I (or E and I)

in Fig. 17.1.

N
A

FIG. 17.1
Independent sources.

E

+

–

E

+

–

I I

Methods of Analysis andSelected Topics (ac)
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The term independent specifies that the magnitude of the source is

independent of the network to which it is applied and that the source

displays its terminal characteristics even if completely isolated.

A dependent or controlled source is one whose magnitude is

determined (or controlled) by a current or voltage of the system in

which it appears.

Currently two symbols are used for controlled sources. One simply

uses the independent symbol with an indication of the controlling ele-

ment, as shown in Fig. 17.2. In Fig. 17.2(a), the magnitude and phase

of the voltage are controlled by a voltage V elsewhere in the system,

with the magnitude further controlled by the constant k1. In Fig.

NA

k1V

+

–

I

(a)

V+ –

k2I

(b)

FIG. 17.2
Controlled or dependent sources.

Possible combinations for controlled sources are indicated in Fig.

17.4. Note that the magnitude of current sources or voltage sources can

be controlled by a voltage and a current, respectively. Unlike with the

independent source, isolation such that V or I 5 0 in Fig. 17.4(a) will

result in the short-circuit or open-circuit equivalent as indicated in Fig.

17.4(b). Note that the type of representation under these conditions is

controlled by whether it is a current source or a voltage source, not by

the controlling agent (V or I).

k1V

+

–

I

(a)

V+ –

k2I

(b)

FIG. 17.3
Special notation for controlled or dependent sources.

17.2(b), the magnitude and phase of the current source are controlled by

a current I elsewhere in the system, with the magnitude further con-

trolled by the constant k2. To distinguish between the dependent and

independent sources, the notation of Fig. 17.3 was introduced. In recent

years many respected publications on circuit analysis have accepted the

notation of Fig. 17.3, although a number of excellent publications in the

area of electronics continue to use the symbol of Fig. 17.2, especially in

the circuit modeling for a variety of electronic devices such as the tran-

sistor and FET. This text will employ the symbols of Fig. 17.3.
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17.3 SOURCE CONVERSIONS
When applying the methods to be discussed, it may be necessary to

convert a current source to a voltage source, or a voltage source to a

current source. This source conversion can be accomplished in much

the same manner as for dc circuits, except now we shall be dealing with

phasors and impedances instead of just real numbers and resistors.

Independent Sources
In general, the format for converting one type of independent source to

another is as shown in Fig. 17.5.

EXAMPLE 17.1 Convert the voltage source of Fig. 17.6(a) to a current

source.

NA

V

+

–

k1V +–

k2V

I

k3I +–

k4I

(a) (b)

FIG. 17.4
Conditions of V 5 0 V and I 5 0 A for a controlled source.

+

–

Voltage source

a

E =  IZ

a9

I =
E

Z

Z

Z

a

a9

Current source

FIG. 17.5
Source conversion.

I  =  20 A  ∠ –53.13°

E  =  100 V  ∠  0°
+

–

(a)

a

R 3 V

a9

XL 4 V

a

a9

XL 4 V

R 3 V

Z

Z

Source conversion

(b)

FIG. 17.6
Example 17.1.
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Solution:
I 5 5 

5 20 A /253.13° [Fig. 17.6(b)]

EXAMPLE 17.2 Convert the current source of Fig. 17.7(a) to a voltage

source.

100 V /0°
}}
5 V /53.13°

E
}
Z

NA

XL 4 VI  =  10 A  ∠  60°

a9

a

(a)

6 V

Z

E  =  120 V  ∠  –30°

a9

a

(b)

XC  =  12 V

Z

+

–

XC

FIG. 17.7
Example 17.2.

Solution:
Z 5 }

Z

Z

C

C

1

Z

Z

L

L

} 5 
(XC /290°)(XL /90°)
}}}

2j XC 1 j XL

5  5 

5 12 V /290° [Fig. 17.7(b)]

E 5 IZ 5 (10 A /60°)(12 V /290°)

5 120 V/230° [Fig. 17.7(b)]

Dependent Sources
For dependent sources, the direct conversion of Fig. 17.5 can be applied

if the controlling variable (V or I in Fig. 17.4) is not determined by a

portion of the network to which the conversion is to be applied. For

example, in Figs. 17.8 and 17.9, V and I, respectively, are controlled by

an external portion of the network. Conversions of the other kind,

where V and I are controlled by a portion of the network to be con-

verted, will be considered in Sections 18.3 and 18.4.

24 V / 0°
}}

2 / 90°

(4 V /290°)(6 V /90°)
}}}

2j 4 V 1 j 6 V
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20 V

+

–
V  = V ∠  0°

+

–

(a)

Z  =  5 kV

(4 3  10–3 V) A  ∠  0°

+

–
V  = V ∠  0°

+

–
Z 5 kV

(b)

FIG. 17.8
Source conversion with a voltage-controlled voltage source.

(4 3  106I) V  ∠  0°

+

–

(b)

40 kV

(100I) Α  ∠  0° Z 40 kV

I =  I  ∠  0° I   I  ∠  0°

(a)

Z

FIG. 17.9
Source conversion with a current-controlled current source.

Solution:
I 5 }

E

Z
} 5

5 (4 3 10
23

V) A /0° [Fig. 17.8(b)]

EXAMPLE 17.4 Convert the current source of Fig. 17.9(a) to a voltage

source.

(20V) V /0°
}}

5 kV /0°

Solution:
E 5 IZ 5 [(100I) A /0°][40 kV /0°]

5 (4 3 10
6
I) V /0° [Fig. 17.9(b)]

17.4 MESH ANALYSIS
General Approach
Independent Voltage Sources Before examining the application

of the method to ac networks, the student should first review the appro-

priate sections on mesh analysis in Chapter 8 since the content of this

section will be limited to the general conclusions of Chapter 8.

The general approach to mesh analysis for independent sources

includes the same sequence of steps appearing in Chapter 8. In fact,

throughout this section the only change from the dc coverage will be to

substitute impedance for resistance and admittance for conductance in

the general procedure.

EXAMPLE 17.3 Convert the voltage source of Fig. 17.8(a) to a current

source.
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1. Assign a distinct current in the clockwise direction to each

independent closed loop of the network. It is not absolutely

necessary to choose the clockwise direction for each loop current.

However, it eliminates the need to have to choose a direction for

each application. Any direction can be chosen for each loop

current with no loss in accuracy as long as the remaining steps are

followed properly.

2. Indicate the polarities within each loop for each impedance as

determined by the assumed direction of loop current for that loop.

3. Apply Kirchhoff’s voltage law around each closed loop in the

clockwise direction. Again, the clockwise direction was chosen to

establish uniformity and to prepare us for the format approach to

follow.

a. If an impedance has two or more assumed currents through it,

the total current through the impedance is the assumed current

of the loop in which Kirchhoff’s voltage law is being applied,

plus the assumed currents of the other loops passing through in

the same direction, minus the assumed currents passing

through in the opposite direction.

b. The polarity of a voltage source is unaffected by the direction of

the assigned loop currents.

4. Solve the resulting simultaneous linear equations for the assumed

loop currents.

The technique is applied as above for all networks with independent

sources or for networks with dependent sources where the controlling

variable is not a part of the network under investigation. If the control-

ling variable is part of the network being examined, a method to be

described shortly must be applied.

EXAMPLE 17.5 Using the general approach to mesh analysis, find the

current I1 in Fig. 17.10.

NA

I1 R  =  4 V

XL  =  2 V

E1  =  2 V  ∠  0°
+

–

XC  =  1 V

+

–
E2  =  6 V  ∠  0°

FIG. 17.10
Example 17.5.

Solution: When applying these methods to ac circuits, it is good

practice to represent the resistors and reactances (or combinations

thereof) by subscripted impedances. When the total solution is found in

terms of these subscripted impedances, the numerical values can be

substituted to find the unknown quantities.

The network is redrawn in Fig. 17.11 with subscripted impedances:

Z1 5 1j XL 5 1j 2 V E1 5 2 V /0°

Z2 5 R 5 4 V E2 5 6 V /0°

Z3 5 2j XC 5 2j 1 V

Steps 1 and 2 are as indicated in Fig. 17.11.

Z1

E1

+

–

+

–
E2

+

–

I1

Z2

+

–

–

+

I2

Z3

–

+

FIG. 17.11
Assigning the mesh currents and subscripted

impedances for the network of Fig. 17.10.
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Step 3:

1E1 2 I1Z1 2 Z2(I1 2 I2) 5 0

2Z2(I2 2 I1) 2 I2Z3 2 E2 5 0

or E12 I1Z1 2 I1Z2 1 I2Z2 5 0

2I2Z2 1 I1Z2 2 I2Z3 2 E2 5 0

so that I1(Z1 1 Z2) 2 I2Z2 5 E1

I2(Z2 1 Z3) 2 I1Z2 5 2E2

which are rewritten as

I1(Z1 1 Z2) 2 I2Z2 5 E1

2I1Z2 1 I2(Z2 1 Z3) 5 2E2

Step 4: Using determinants, we obtain

 E1 2Z2 
 2E2 Z2 1 Z3

I1 5 ––––––––––––––––––
Z1 1 Z2 2Z2 
 2Z2 Z2 1 Z3

5 

5 

Substituting numerical values yields

I1 5 

5 5 5 

5 3.61 A /2236.30° or 3.61 A /123.70°

Dependent Voltage Sources For dependent voltage sources, the

procedure is modified as follows:

1. Steps 1 and 2 are the same as those applied for independent volt-

age sources.

2. Step 3 is modified as follows: Treat each dependent source like an

independent source when Kirchhoff’s voltage law is applied to

each independent loop. However, once the equation is written,

substitute the equation for the controlling quantity to ensure that

the unknowns are limited solely to the chosen mesh currents.

3. Step 4 is as before.

EXAMPLE 17.6 Write the mesh currents for the network of Fig. 17.12

having a dependent voltage source.

Solution:
Steps 1 and 2 are defined on Fig. 17.12.

Step 3: E1 2 I1R1 2 R2(I1 2 I2) 5 0

R2(I2 2 I1) 1 mVx 2 I2R3 5 0

Then substitute Vx 5 (I1 2 I2)R2

16.12 A /2172.87°
}}}

4.47 /63.43°

216 2j 2
}}

2 1 j 4

2162j 2
}}
j 8 2 j 22 2 j 4

(2 V 2 6 V)(4 V) 1 (2 V)(2j 1 V)
}}}}}}
(1j 2 V)(4 V) 1 (1j 2 V)(2j 2 V) 1 (4 V)(2j 2 V)

(E1 2 E2)Z2 1 E1Z3
}}}
Z1Z2 1 Z1Z3 1 Z2Z3

E1(Z2 1 Z3) 2 E2(Z2)
}}}
(Z1 1 Z2)(Z2 1 Z3) 2 (Z2)

2

NA

R1

R3
R2

mVx

+

–

+–

E1 Vx

+

–

I1 I2

m

FIG. 17.12
Applying mesh analysis to a network with a

voltage-controlled voltage source.
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The result is two equations and two unknowns.

E1 2 I1R1 2 R2(I 2 I2) 5 0

R2(I2 2 I1) 1 mR2(I1 2 I2) 2 I2R3 5 0

Independent Current Sources For independent current sources,

the procedure is modified as follows:

1. Steps 1 and 2 are the same as those applied for independent

sources.

2. Step 3 is modified as follows: Treat each current source as an

open circuit (recall the supermesh designation of Chapter 8), and

write the mesh equations for each remaining independent path.

Then relate the chosen mesh currents to the dependent sources to

ensure that the unknowns of the final equations are limited sim-

ply to the mesh currents.

3. Step 4 is as before.

EXAMPLE 17.7 Write the mesh currents for the network of Fig. 17.13

having an independent current source.

Solution:
Steps 1 and 2 are defined on Fig. 17.13.

Step 3: E1 2 I1Z1 1 E2 2 I2Z2 5 0 (only remaining independent

path)

with I1 1 I 5 I2

The result is two equations and two unknowns.

Dependent Current Sources For dependent current sources, the

procedure is modified as follows:

1. Steps 1 and 2 are the same as those applied for independent

sources.

2. Step 3 is modified as follows: The procedure is essentially the

same as that applied for independent current sources, except now

the dependent sources have to be defined in terms of the chosen

mesh currents to ensure that the final equations have only mesh

currents as the unknown quantities.

3. Step 4 is as before.

EXAMPLE 17.8 Write the mesh currents for the network of Fig. 17.14

having a dependent current source.

Solution:
Steps 1 and 2 are defined on Fig. 17.14.

Step 3: E1 2 I1Z1 2 I2Z2 1 E2 5 0

and kI 5 I1 2 I2

Now I 5 I1 so that kI1 5 I1 2 I2 or I2 5 I1(1 2 k)

The result is two equations and two unknowns.

NA

E2 +–

E1

+

–

I1 I2
Z2

Z1

I

FIG. 17.13
Applying mesh analysis to a network with an

independent current source.

E2

+

E1

+

–

I1 I2

Z1

kI

–

Z2

I

FIG. 17.14
Applying mesh analysis to a network with a

current-controlled current source.
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Format Approach
The format approach was introduced in Section 8.9. The steps for

applying this method are repeated here with changes for its use in ac

circuits:

1. Assign a loop current to each independent closed loop (as in the

previous section) in a clockwise direction.

2. The number of required equations is equal to the number of

chosen independent closed loops. Column 1 of each equation is

formed by simply summing the impedance values of those

impedances through which the loop current of interest passes and

multiplying the result by that loop current.

3. We must now consider the mutual terms that are always subtracted

from the terms in the first column. It is possible to have more than

one mutual term if the loop current of interest has an element in

common with more than one other loop current. Each mutual

term is the product of the mutual impedance and the other loop

current passing through the same element.

4. The column to the right of the equality sign is the algebraic sum of

the voltage sources through which the loop current of interest

passes. Positive signs are assigned to those sources of voltage

having a polarity such that the loop current passes from the

negative to the positive terminal. Negative signs are assigned to

those potentials for which the reverse is true.

5. Solve the resulting simultaneous equations for the desired loop

currents.

The technique is applied as above for all networks with independent

sources or for networks with dependent sources where the controlling vari-

able is not a part of the network under investigation. If the controlling

variable is part of the network being examined, additional care must be

taken when applying the above steps.

EXAMPLE 17.9 Using the format approach to mesh analysis, find the

current I2 in Fig. 17.15.

NA

Solution 1: The network is redrawn in Fig. 17.16:

Z1 5 R1 1 j XL1
5 1 V 1 j 2 V E1 5 8 V /20°

Z2 5 R2 2 j XC 5 4 V 2 j 8 V E2 5 10 V /0°

Z3 5 1j XL 2
5 1j 6 V

I2

4 V

E1  =  8 V  ∠  20°
+

–

8 V

–

+
E2  =  10 V  ∠  0°

R2

XC

XL1
  =  2 V

1 VR1

XL2
6 V

FIG. 17.15
Example 17.9.

Z1

E1

+

–

–

+
E2

+

–

I1

Z2

+

–

–

+

I2

Z3

–

+

FIG. 17.16
Assigning the mesh currents and subscripted

impedances for the network of Fig. 17.15.
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Note the reduction in complexity of the problem with the substitution of

the subscripted impedances.

Step 1 is as indicated in Fig. 17.16.

Steps 2 to 4:

I1(Z1 1 Z2) 2 I2Z2 5 E1 1 E2

I2(Z2 1 Z3) 2 I1Z2 5 2E2

which are rewritten as

I1(Z1 1 Z2) 2 I2Z2 5 E1 1 E2

2I1Z2 1 I2(Z2 1 Z3) 5 2E2

Step 5: Using determinants, we have

Z1 1 Z2 E1 1 E2
 2Z2 2E2 

I2 5 ––––––––––––––––––
Z1 1 Z2 2Z2 
 2Z2 Z2 1 Z3

5 

5 

Substituting numerical values yields

Z2E1 2 Z1E2
}}}
Z1Z2 1 Z1Z3 1 Z2Z3

2(Z1 1 Z2)E2 1 Z2(E1 1 E2)
}}}}

(Z1 1 Z2)(Z2 1 Z3) 2 Z
2
2

NA

((4,28)*8(/20)2(1,2)*(10/0))/((1,2)*(4,28)1(1,2)*(0,6)1(4,28)*(0,6)) ENTER
(67.854E23,21.272E0)
Ans c Pol
(1.274E0/286.956E0)

CALC. 17.1

I2 5 

5

5 5 5 

5 1.27 A /286.92°

80.95 A /258.74°
}}}

63.53 /28.18°

42.0 2 j 69.20
}}

56 1 j 30

(52.0 2 j 49.20) 2 (10 1 j 20)
}}}}

56 1 j 30

(4 2 j 8)(7.52 1 j 2.74) 2 (10 1 j 20)
}}}}

20 1 ( j 6 2 12) 1 ( j 24 1 48)

(4 V 2 j 8 V)(8 V / 20°) 2 (1 V 1 j 2 V)(10 V /0°)
}}}}}}}}}
(1 V 1 j 2 V)(4 V 2 j 8 V) 1 (1 V 1 j 2 V)(1 j 6 V) 1 (4 V 2 j 8 V)(1j 6 V)

Mathcad Solution: This example provides an excellent opportunity

to demonstrate the power of Mathcad. First the impedances and para-

meters are defined for the equations to follow as shown in Fig. 17.17.

Then the guess values of the mesh currents I1 and I2 are entered. The

label Given must then be entered followed by the equations for the net-

Calculator The calculator (TI-86 or equivalent) can be an effective tool

in performing the long, laborious calculations involved with the final

equation appearing above. However, you must be very careful to use the

correct number of brackets and to define by brackets the order of the arith-

metic operations.
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work. Note that in this example, we are not continuing with the analy-

sis until the matrix is defined—we are working directly from the net-

work equations. Once the equations have been properly entered,

Find(I1,I2) is entered. Then selecting the equal sign will result in the

single-column matrix with the results in rectangular form. Conversion

to polar form requires defining a variable A and then calling for the

magnitude and angle using the definitions entered earlier in the list-

ing and both the Calculator and Greek toolbars. The result for I2 is

1.274 A /286.94° which is an excellent match with the theoretical

solution.

EXAMPLE 17.10 Write the mesh equations for the network of Fig.

17.18. Do not solve.

NA

FIG. 17.17
Using Mathcad to verify the results of Example 17.9.

E1

+

–

–

+
E2

R2

R1

XL2

XL1

XC1

R3

XC2

R4

FIG. 17.18
Example 17.10.
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Solution: The network is redrawn in Fig. 17.19. Again note the

reduced complexity and increased clarity provided by the use of sub-

scripted impedances:

Z1 5 R1 1 j XL1
Z4 5 R3 2 j XC2

Z2 5 R2 1 j XL2
Z5 5 R4

Z3 5 j XC1

and I1(Z1 1 Z2) 2 I2Z2 5 E1

I2(Z2 1 Z3 1 Z4) 2 I1Z2 2 I3Z4 5 0

I3(Z4 1 Z5) 2 I2Z4 5 E2

or I1(Z1 1 Z2) 2 I2(Z2) 1 0 5 E1

I1Z2 2 I2(Z2 1 Z3 1 Z4) 1 I3(Z4) 5 0

0 2 I2(Z4) 1 I3(Z4 1 Z5) 5 E2

NA

Z2

+

–

–

+

Z1

E1

+

–

–

+
E2

+ –

I1 I2

Z4

+

–

–

+

Z3
+ –

Z5
+ –

I3

FIG. 17.19
Assigning the mesh currents and subscripted impedances for the network of

Fig. 17.18.

EXAMPLE 17.11 Using the format approach, write the mesh equa-

tions for the network of Fig. 17.20.

Solution: The network is redrawn as shown in Fig. 17.21, where

Z1 5 R1 1 j XL 1
Z3 5 j XL2

Z2 5 R2 Z4 5 j XL3

and I1(Z2 1 Z4) 2 I2Z2 2 I3Z4 5 E1

I2(Z1 1 Z2 1 Z3) 2 I1Z2 2 I3Z3 5 0

I3(Z3 1 Z4) 2 I2Z3 2 I1Z4 5 E2

or

Note the symmetry about the diagonal axis; that is, note the location of

2Z2, 2Z4, and 2Z3 off the diagonal.

17.5 NODAL ANALYSIS
General Approach
Independent Sources Before examining the application of the

method to ac networks, a review of the appropriate sections on nodal

I1(Z2 1 Z4) 2 I2Z2 2 I3Z4 5 E1

2I1Z2 1 I2(Z1 1 Z2 1 Z3) 2 I3Z3 5 0

2I1Z4 2 I2Z3 1 I3(Z3 1 Z4) 5 E2

E1

+

–

–

+
E2

R1

XL3

XL1

R2
XL2

FIG. 17.20
Example 17.11

Z2

E1

+

–

–

+
E2

I1

Z4

I2

I3

Z3

Z1

FIG. 17.21
Assigning the mesh currents and subscripted

impedances for the network of Fig. 17.20.
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analysis in Chapter 8 is suggested since the content of this section will

be limited to the general conclusions of Chapter 8.

The fundamental steps are the following:

1. Determine the number of nodes within the network.

2. Pick a reference node and label each remaining node with a

subscripted value of voltage: V1, V2, and so on.

3. Apply Kirchhoff’s current law at each node except the reference.

Assume that all unknown currents leave the node for each

application of Kirchhoff’s current law.

4. Solve the resulting equations for the nodal voltages.

A few examples will refresh your memory about the content of

Chapter 8 and the general approach to a nodal-analysis solution.

EXAMPLE 17.12 Determine the voltage across the inductor for the

network of Fig. 17.22.

NA

E  =
12 V  ∠0°

+

–

R1

XL XC

0.5 kV

10 kV

R2

2 kV

5 kV I  =
4 mA  ∠0°

FIG. 17.22
Example 17.12.

Z2E

+

–

Z1Z1 Z3

Z4 I

V2V1

FIG. 17.23
Assigning the nodal voltages and subscripted impedances to the network of 

Fig. 17.22.

Solution 1:
Steps 1 and 2 are as indicated in Fig. 17.23.

Z2E

+

–

Z1Z1 Z3

V2V1

I1 I3

I2

FIG. 17.24
Applying Kirchhoff’s current law to the node

V1 of Fig. 17.23.

Step 3: Note Fig. 17.24 for the application of Kirchhoff’s current law

to node V1:

S Ii 5 S Io

0 5 I1 1 I2 1 I3

1 1 5 0
V1 2 V2
}

Z3

V1
}
Z2

V1 2 E
}

Z1
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Rearranging terms:

V13 1 1 4 2 V23 4 5 (17.1)

Note Fig. 17.25 for the application of Kirchhoff’s current law to

node V2.

0 5 I3 1 I4 1 I

1 1 I 5 0

Rearranging terms:

V23 1 4 2 V13 4 5 2I (17.2)

Grouping equations:

V13 1 1 42 V23 4 5 

V13 4 2 V23 1 4 5 I

1 1 5 1 1 5 2.5 mS /22.29°

1 5 1 5 0.539 mS /21.80°

and

V1[2.5 mS /22.29°] 2 V2[0.5 mS /0°] 5 24 mA /0°

V1[0.5 mS /0°] 2 V2[0.539 mS /21.80°] 5 4 mA /0°

with

 24 mA /0° 20.5 mS /0° 
 4 mA /0° 20.539 mS /21.80°

V1 5 —————————————————–
2.5 mS /22.29° 20.5 mS /0° 
0.5 mS /0° 20.539 mS /21.80°

1
}
2j 5 kV

1
}
2 kV

1
}
Z4

1
}
Z3

1
}
2 kV

1
}
j 10 kV

1
}
0.5 kV

1
}
Z3

1
}
Z2

1
}
Z1

1
}
Z4

1
}
Z3

1
}
Z3

E
}
Z1

1
}
Z3

1
}
Z3

1
}
Z2

1
}
Z1

1
}
Z3

1
}
Z4

1
}
Z3

V2
}
Z4

V2 2 V1
}

Z3

E1
}
Z1

1
}
Z3

1
}
Z3

1
}
Z2

1
}
Z1

FIG. 17.25
Applying Kirchhoff’s current law to the node

V2 of Fig. 17.23.

Z3

Z4 I

V2V1

I3

I4

5 

5 

5 

5 5 

V1 5 9.95 V /1.88°

11.106 V /2154.33°
}}}

1.116 /2156.21°

210.01 V 2 j 4.81 V
}}}

21.021 2 j 0.45

2(12.01 1 j 4.81) 3 1026 V 1 2 3 1026 V
}}}}}
2(1.271 1 j 0.45) 3 1026

1 0.25 3 1026

212.94 3 1026 V /21.80° 1 2 3 1026 V /0°
}}}}}
21.348 3 1026

/19.51° 1 0.25 3 1026
/0°

(24 mA /0°)(20.539 mS /21.80°) 1 (0.5 mS /0°)(4 mA /0°)
}}}}}}}}
(2.5 mS /22.29°)(20.539 mS /21.80°) 1 (0.5 mS /0°)(0.5 mS /0°)

Mathcad Solution: The length and the complexity of the above

mathematical development strongly suggest the use of an alternative

approach such as Mathcad. The printout of Fig. 17.26 first defines the

letters k and m to specific numerical values so that the power-of-ten

format did not have to be included in the equations. Thus, the results are

cleaner and easier to review. When entering the equations, remember

that the j is entered as 1j without the multiplication sign  between the
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FIG. 17.26
Using Mathcad to verify the results of Example 17.12.

1 and the j. A multiplication sign between the two will define the j as

another variable. Also be sure that the multiplication process is inserted

between the nodal variables and the brackets. If an error signal contin-

ues to surface, it is often best to simply reenter the entire listing—errors

are often not easy to spot simply by looking at the resulting equations.

Finally the results are obtained and converted to polar form for com-

parison with the theoretical solution. The solution of 9.949 A /1.837°

is a very close confirmation of the longhand solution.

Before leaving this example, let’s look at another method for obtain-

ing the polar form of the solution. The method appears in the bottom of

Fig. 17.26. First deg is defined as shown, and then arg is picked up

from the Insert-f(x)-Insert Function-arg sequence. Next V1 is

entered; the result will be in radian form but with a small black rectan-

gle in the place where the units normally appear. Click on that black

rectangle, and the bracket will appear and deg can be typed. When the

equal sign is selected, the angle in degrees will appear.

Dependent Current Sources For dependent current sources, the

procedure is modified as follows:

1. Steps 1 and 2 are the same as those applied for independent

sources.

2. Step 3 is modified as follows: Treat each dependent current source

like an independent source when Kirchhoff’s current law is applied

to each defined node. However, once the equations are established,

substitute the equation for the controlling quantity to ensure that

the unknowns are limited solely to the chosen nodal voltages.

3. Step 4 is as before.



Solution:
Steps 1 and 2 are as defined in Fig. 17.27.

Step 3: At node V1,

I 5 I1 1 I2

1 2 I 5 0

and V13 1 4 2 V23 4 5 I

At node V2,

I2 1 I3 1 kI
9
5 0

1 1 k 3 4 5 0

and V13 4 2 V23 1 45 0

resulting in two equations and two unknowns.

1
}
Z3

1 2 k
}

Z2

1 2 k
}

Z2

V1 2 V2
}

Z2

V2
}
Z3

V2 2 V1
}

Z2

1
}
Z2

1
}
Z2

1
}
Z1

V1 2 V2
}

Z2

V1
}
Z1
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EXAMPLE 17.13 Write the nodal equations for the network of Fig.

17.27 having a dependent current source.

Z1I

Z2

Z3 kI′

V2V1

I′

FIG. 17.27
Applying nodal analysis to a network with a current-controlled current source.

Independent Voltage Sources between Assigned Nodes For

independent voltage sources between assigned nodes, the procedure is

modified as follows:

1. Steps 1 and 2 are the same as those applied for independent sources.

2. Step 3 is modified as follows: Treat each source between defined

nodes as a short circuit (recall the supernode classification of

Chapter 8), and write the nodal equations for each remaining

independent node. Then relate the chosen nodal voltages to the

independent voltage source to ensure that the unknowns of the

final equations are limited solely to the nodal voltages.

3. Step 4 is as before.
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EXAMPLE 17.14 Write the nodal equations for the network of Fig.

17.28 having an independent source between two assigned nodes.

Z1I1
Z2 I2

V2V1

E1
+–

FIG. 17.28
Applying nodal analysis to a network with an independent voltage source

between defined nodes.

Solution:
Steps 1 and 2 are defined in Fig. 17.28.

Step 3: Replacing the independent source E with a short-circuit equiv-

alent results in a supernode that will generate the following equation

when Kirchhoff’s current law is applied to node V1:

I1 5 1 1 I2

with V2 2 V1 5 E

and we have two equations and two unknowns.

Dependent Voltage Sources between Defined Nodes For

dependent voltage sources between defined nodes, the procedure is

modified as follows:

1. Steps 1 and 2 are the same as those applied for independent volt-

age sources.

2. Step 3 is modified as follows: The procedure is essentially the

same as that applied for independent voltage sources, except now

the dependent sources have to be defined in terms of the chosen

nodal voltages to ensure that the final equations have only nodal

voltages as their unknown quantities.

3. Step 4 is as before.

EXAMPLE 17.15 Write the nodal equations for the network of Fig.

17.29 having a dependent voltage source between two defined nodes.

Solution:
Steps 1 and 2 are defined in Fig. 17.29.

Step 3: Replacing the dependent source mVx with a short-circuit equiv-

alent will result in the following equation when Kirchhoff’s current law

is applied at node V1:

I 5 I1 1 I2

1 2 I 5 0
(V1 2 V2)
}}

Z2

V1
}
Z1

V2
}
Z2

V1
}
Z1

V2V1

Vx
+ –

+

–

Z2

I

mVxm Z3Z1

FIG. 17.29
Applying nodal analysis to a network with a

voltage-controlled voltage source.
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and V2 5 mVx 5 m[V1 2 V2]

or V2 5 V1

resulting in two equations and two unknowns. Note that because the

impedance Z3 is in parallel with a voltage source, it does not appear in

the analysis. It will, however, affect the current through the dependent

voltage source.

Format Approach
A close examination of Eqs. (17.1) and (17.2) in Example 17.12 will

reveal that they are the same equations that would have been obtained

using the format approach introduced in Chapter 8. Recall that the

approach required that the voltage source first be converted to a current

source, but the writing of the equations was quite direct and minimized

any chances of an error due to a lost sign or missing term.

The sequence of steps required to apply the format approach is the

following:

1. Choose a reference node and assign a subscripted voltage label to

the (N 2 1) remaining independent nodes of the network.

2. The number of equations required for a complete solution is equal

to the number of subscripted voltages (N 2 1). Column 1 of each

equation is formed by summing the admittances tied to the node of

interest and multiplying the result by that subscripted nodal voltage.

3. The mutual terms are always subtracted from the terms of the first

column. It is possible to have more than one mutual term if the

nodal voltage of interest has an element in common with more

than one other nodal voltage. Each mutual term is the product of

the mutual admittance and the other nodal voltage tied to that

admittance.

4. The column to the right of the equality sign is the algebraic sum of

the current sources tied to the node of interest. A current source is

assigned a positive sign if it supplies current to a node, and a

negative sign if it draws current from the node.

5. Solve resulting simultaneous equations for the desired nodal

voltages. The comments offered for mesh analysis regarding

independent and dependent sources apply here also.

EXAMPLE 17.16 Using the format approach to nodal analysis, find

the voltage across the 4-V resistor in Fig. 17.30.

m
}
1 1 m

NA

I2  =  4 A  ∠  0°I1  =  6 A  ∠  0° R

XL  =  5 V

XC
4 V 2 V

FIG. 17.30
Example 17.16.
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V1(Y1 1 Y2) 2 V2(Y2) 5 2I1

V2(Y3 1 Y2) 2 V1(Y2) 5 1I2

or V1(Y1 1 Y2) 2 V2(Y2) 5 2I1

2V1(Y2) 1 V2(Y3 1 Y2) 5 1I2

Y1 5 Y2 5 Y3 5 

Using determinants yields

 2I1 2Y2 
 1I2 Y3 1 Y2

V1 5 ––––––––––––––––––
Y1 1 Y2 2Y2 
 2Y2 Y3 1 Y2

5 

5 

Substituting numerical values, we have

V1 5

5 

5 

5 

5 

V1 5 20.80 V/2126.87°

Mathcad Solution: For this example we will use the matrix format

to find the nodal voltage V1. First the various parameters of the network

are defined including the factor deg so that the phase angle will be dis-

played in degrees. Next the numerator is defined by n, and the Matrix

2.6 V /290°
}}
0.125 /36.87°

21.8 /90° 1 0.8 /290°
}}}

0.1 1 j 0.075

(20.3 /90°)(6 /0°) 1 (4 /0°)(0.2 /290°)
}}}}}

j 0.125 1 0.1 2 j 0.05

2(1j 0.5 2 j 0.2)6 /0° 1 4 /0°(2j 0.2)
}}}}}

(1/2j 8) 1 (1/10) 1 (1/j 20)

2[(1/2j 2 V) 1 (1/j 5 V)]6 A /0° 1 4 A /0°(1/j 5 V)
}}}}}}}
(1/4 V)(1/2j 2 V) 1 (1/j 5 V)(1/2j 2 V) 1 (1/4 V)(1/j 5 V)

2(Y3 1 Y2)I1 1 I2Y2
}}}
Y1Y3 1 Y2Y3 1 Y1Y2

2(Y3 1 Y2)I1 1 I2Y2
}}}
(Y1 1 Y2)(Y3 1 Y2) 2 Y

2
2

1
}
Z3

1
}
Z2

1
}
Z1

NA

Z1

Z2

I2

V2V1

I1
Z3

Reference

FIG. 17.31
Assigning the nodal voltages and subscripted impedances for the network of

Fig. 17.30.

Solution 1: Choosing nodes (Fig. 17.31) and writing the nodal equa-

tions, we have

Z1 5 R 5 4 V Z2 5 j XL 5 j 5 V Z3 5 2j XC 5 2j 2 V
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icon is selected from the Matrix toolbar. Within the Insert Matrix dia-

log box, the Rows and Columns are set as 2 followed by an OK to

place the 2 3 2 matrix on the screen. The parameters are than entered

as shown in Fig. 17.32 using a left click of the mouse to select the

parameter to be entered. Once the numerator is set, the process is

repeated to define the numerator. Finally the equation for V1 is defined,

and the result in rectangular form will appear when the equal sign is

selected. The magnitude and the angle are then found in polar form as

described in earlier sections of this chapter. The results are again a clear

confirmation of the theoretical result.

NA

FIG. 17.32
Using Mathcad to verify the results of Example 17.16.

EXAMPLE 17.17 Using the format approach, write the nodal equa-

tions for the network of Fig. 17.33.

I1  =  10 A  ∠  20°E1  =  20 V  ∠  0°

R2

XC  =  10 V

4 V+

– XL2
5 V

XL1

8 V

R1

7 V

R3
8 V

FIG. 17.33
Example 17.17.
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Write the nodal equations:

V1(Y1 1 Y2 1 Y3) 2 V2(Y3) 5 1I2

V2(Y3 1 Y4) 2 V1(Y3) 5 1I1

Y1 5 Y2 5 Y3 5 Y4 5 

which are rewritten as

V1(Y1 1 Y2 1 Y3) 2 V2(Y3) 5 1I2

2V1(Y3) 1 V2(Y3 1 Y4) 5 1I1

EXAMPLE 17.18 Write the nodal equations for the network of Fig.

17.36. Do not solve.

Solution: Choose nodes (Fig. 17.37):

Z1 5 R1 Z2 5 j XL1
Z3 5 R2 2 j XC2

Z4 5 2j XC1
Z5 5 R3 Z6 5 j XL2

1
}
Z4

1
}
Z3

1
}
Z2

1
}
Z1

NA

Z2

+

–

E1

Z1 Z3

I1

a

Z4

a9

FIG. 17.34
Assigning the subscripted impedances for the network of Fig. 17.33.

Z1

Z3

I1

V2V1

I2  =
E1

Z1

Z2

Reference

Z4

a9

a

FIG. 17.35
Converting the voltage source of Fig. 17.34 to a current source and defining the

nodal voltages.

Solution: The circuit is redrawn in Fig. 17.34, where

Z1 5 R1 1 j XL1
5 7 V 1 j 8 V E1 5 20 V /0°

Z2 5 R2 1 j XL2
5 4 V 1 j 5 V I1 5 10 A /20°

Z3 5 2j XC 5 2j 10 V

Z4 5 R3 5 8 V

Converting the voltage source to a current source and choosing nodes,

we obtain Fig. 17.35. Note the “neat” appearance of the network using

the subscripted impedances. Working directly with Fig. 17.33 would be

more difficult and could produce errors.
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R2
XL2

XL1

R1
I1

XC2

XC1

R3

I2

FIG. 17.36
Example 17.18.

FIG. 17.37
Assigning the nodal voltages and subscripted impedances for the network of

Fig. 17.36.

Z1

Z2

V2V1

I1 Z3 Z5 Z6

Z4

V3

I2

and write the nodal equations:

V1(Y1 1 Y2) 2 V2(Y2) 5 1I1

V2(Y2 1 Y3 1 Y4) 2 V1(Y2) 2 V3(Y4) 5 2I2

V3(Y4 1 Y5 1 Y6) 2 V2(Y4) 5 1I2

which are rewritten as

V1(Y1 1 Y2) 2 V2(Y2) 1 0 5 1I1

2V1(Y2) 1 V2(Y2 1 Y3 1 Y4) 2 V3(Y4) 5 2I2

0 2 V2(Y4) 1 V3(Y4 1 Y5 1 Y6) 5 1I2

Y1 5 Y2 5 Y3 5 

Y4 5 Y5 5 Y6 5 

Note the symmetry about the diagonal for this example and those

preceding it in this section.

1
}
j XL2

1
}
R3

1
}
2j XC1

1
}}
R2 2 j XC2

1
}
j XL1

1
}
R1
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Solution: In this case there is no need for a source conversion. The

network is redrawn in Fig. 17.39 with the chosen nodal voltage and

subscripted impedances.

Apply the format approach:

Y1 5 5 5 0.25 mS /0° 5 G1 /0°

Y2 5 5 5 1 mS /0° 5 G2 /0°

Y3 5 5 5 0.5 mS /290°

5 2j 0.5 mS 5 2j BL

V1: (Y1 1 Y2 1 Y3)V1 5 2100I

and V1 5 

5 

5 5 

5 274.28 3 103
I /21.80°

5 274.28 3 1031 2 /21.80°

V1 5 VL 5 2(74.28Vi) V/21.80°

17.6 BRIDGE NETWORKS (ac)
The basic bridge configuration was discussed in some detail in Section

8.11 for dc networks. We now continue to examine bridge networks by

considering those that have reactive components and a sinusoidal ac

voltage or current applied.

We will first analyze various familiar forms of the bridge network

using mesh analysis and nodal analysis (the format approach). The bal-

ance conditions will be investigated throughout the section.

Vi
}
1 kV

2100 3 103
I

}}
1.3463 /221.80°

2100 3 103
I

}}
1.25 2 j 0.5

2100I
}}}
0.25 mS 1 1 mS 2 j 0.5 mS

2100I
}}
Y1 1 Y2 1 Y3

1
}}
2 kV /90°

1
}
Z3

1
}
1 kV

1
}
Z2

1
}
4 kV

1
}
Z1

NA

Vi  = Vi ∠  0°

+

–

2 kV VL
RC

100I1 kV

I
B

E E

C

+

–

4 kV RL 1 kV

Transistor
equivalent
network

XL

IL

(   I)β

FIG. 17.38
Example 17.19.

Y1

IL

V1

Y3 VL100I Y2

+

–

FIG. 17.39
Assigning the nodal voltage and subscripted

impedances for the network of Fig. 17.38.

EXAMPLE 17.19 Apply nodal analysis to the network of Fig. 17.38.

Determine the voltage VL.
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Applying the format approach:

(Z1 1 Z3)I1 2 (Z1)I2 2 (Z3)I3 5 E

(Z1 1 Z2 1 Z5)I2 2 (Z1)I1 2 (Z5)I3 5 0

(Z3 1 Z4 1 Z5)I3 2 (Z3)I1 2 (Z5)I2 5 0

which are rewritten as

I1(Z1 1 Z3) 2 I2Z1 2 I3Z3 5 E

2I1Z1 1 I2(Z1 1 Z2 1 Z5) 2 I3Z5 5 0

2I1Z3 2 I2Z5 1 I3(Z3 1 Z4 1 Z5) 5 0

Note the symmetry about the diagonal of the above equations. For

balance, IZ5
5 0 A, and

IZ5
5 I2 2 I3 5 0

From the above equations,

Z1 1 Z3 E 2Z3 
 2Z1 0 2Z5 
 2Z3 0 (Z3 1 Z4 1 Z5)

I2 5 –––––––––––––––––––––––––––––––––––––––
Z1 1 Z3 2Z1 2Z3 
 2Z1 (Z1 1 Z2 1 Z5) 2Z5 
 2Z3 2Z5 (Z3 1 Z4 1 Z5)

5 

where D signifies the determinant of the denominator (or coefficients).

Similarly,

I3 5 

and IZ5
5 I2 2 I3 5 

E(Z1Z4 2 Z3Z2)
}}

D

E(Z1Z3 1 Z3Z2 1 Z1Z5 1 Z3Z5)
}}}}

D

E(Z1Z3 1 Z1Z4 1 Z1Z5 1 Z3Z5)
}}}}

D

NA

I1

–

Z5

Z1

Z4

Z2

Z3

+

–

E

I2

I3

FIG. 17.41
Assigning the mesh currents and subscripted impedances for the network of

Fig. 17.40.

R1

+

–

E

C1

R2

R5

R3

R4

L4

FIG. 17.40
Maxwell bridge.

Apply mesh analysis to the network of Fig. 17.40. The network is

redrawn in Fig. 17.41, where

Z1 5 5 5 2 j

Z2 5 R2 Z3 5 R3 Z4 5 R4 1 j XL Z5 5 R5

BC
}
G2

1 1 B2
C

G1
}
G2

1 1 B2
C

1
}
G1 1j BC

1
}
Y1



BRIDGE NETWORKS (ac)  767

For IZ5
5 0, the following must be satisfied (for a finite D not equal to

zero):

IZ5
5 0 (17.3)

This condition will be analyzed in greater depth later in this section.

Applying nodal analysis to the network of Fig. 17.42 will result in

the configuration of Fig. 17.43, where

Y1 5 5 Y2 5 5 

Y3 5 5 Y4 5 5 Y5 5 

and (Y1 1 Y2)V1 2 (Y1)V2 2 (Y2)V3 5 I

(Y1 1 Y3 1 Y5)V2 2 (Y1)V1 2 (Y5)V3 5 0

(Y2 1 Y4 1 Y5)V3 2 (Y2)V1 2 (Y5)V2 5 0

which are rewritten as

V1(Y1 1 Y2) 2 V2Y1 2 V3Y2 5 I

2V1Y1 1 V2(Y1 1 Y3 1 Y5) 2 V3Y5 5 0

2V1Y2 2 V2Y5 1 V3(Y2 1 Y4 1 Y5) 5 0

Again, note the symmetry about the diagonal axis. For balance, 

VZ5
5 0 V, and

VZ5
5 V2 2 V3 5 0

From the above equations,

Y1 1 Y2 I 2Y2 
 2Y1 0 2Y5 
 2Y2 0 (Y2 1 Y4 1 Y5) 

V2 5 ––––––––––––––––––––––––––––––––––––––––
Y1 1 Y2 2Y1 2Y2 
 2Y1 (Y1 1 Y3 1 Y5) 2Y5 
 2Y2 2Y5 (Y2 1 Y4 1 Y5 

5 

Similarly,

V3 5 

Note the similarities between the above equations and those obtained

for mesh analysis. Then

VZ5
5 V2 2 V3 5 

For VZ5
5 0, the following must be satisfied for a finite D not equal to

zero:

VZ5
5 0 (17.4)Y1Y4 5 Y3Y2

I(Y1Y4 2 Y3Y2)
}}

D

I(Y1Y3 1 Y3Y2 1 Y1Y5 1 Y3Y5)
}}}}

D

I(Y1Y3 1 Y1Y4 1 Y1Y5 1 Y3Y5)
}}}}

D

1
}
R5

1
}
R4 1 j XL

1
}
Z4

1
}
R3

1
}
Z3

1
}
R2

1
}
Z2

1
}}
R1 2 j XC

1
}
Z1

Z1Z4 5 Z3Z2

NA

R1

I

C1
R2

R5

R3

R4

L4

V2

–

Z5

Z1

Z4

Z2

Z3

I
V3

V1

FIG. 17.42
Hay bridge.

FIG. 17.43
Assigning the nodal voltages and subscripted

impedances for the network of Fig. 17.42.



NA768  METHODS OF ANALYSIS AND SELECTED TOPICS (ac)

However, substituting Y1 5 1/Z1, Y2 5 1/Z2, Y3 5 1/Z3, and Y4 5

1/Z4, we have

5 

or VZ5
5 0

corresponding with Eq. (17.3) obtained earlier.

Let us now investigate the balance criteria in more detail by consid-

ering the network of Fig. 17.44, where it is specified that I and V 5 0.

Since I 5 0,

(17.5a)

and (17.5b)

In addition, for V 5 0,

(17.5c)

and (17.5d)

Substituting the preceding current relations into Eq. (17.5d), we have

I1Z3 5 I2Z4

and I2 5 I1

Substituting this relationship for I2 into Eq. (17.5c) yields

I1Z1 5 1 I12Z2

and Z1Z4 5 Z2Z3

as obtained earlier. Rearranging, we have

(17.6)

corresponding with Eq. (8.4) for dc resistive networks.

For the network of Fig. 17.42, which is referred to as a Hay bridge

when Z5 is replaced by a sensitive galvanometer,

Z1 5 R1 2 j XC

Z2 5 R2

Z3 5 R3

Z4 5 R4 1 j XL

This particular network is used for measuring the resistance and induc-

tance of coils in which the resistance is a small fraction of the reactance

XL.

}
Z

Z

1

3

} 5 }
Z

Z

2

4

}

Z3
}
Z4

Z3
}
Z4

I3Z3 5 I4Z4

I1Z1 5 I2Z2

I2 5 I4

I1 5 I3

Z1Z4 5 Z3Z2

1
}
Z3Z2

1
}
Z1Z4

I1

–

Z1

Z4

Z2

Z3

+

–

E
+

I4

I2

I3
V  =  0

I  =  0

–

FIG. 17.44
Investigating the balance criteria for an ac

bridge configuration.
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Substitute into Eq. (17.6) in the following form:

Z2Z3 5 Z4Z1

R2R3 5 (R4 1 j XL)(R1 2 j XC)

or R2R3 5 R1R4 1 j (R1XL 2 R4XC) 1 XC XL

so that

R2R3 1 j 0 5 (R1R4 1 XC XL) 1 j (R1XL 2 R4XC)

For the equations to be equal, the real and imaginary parts must be

equal. Therefore, for a balanced Hay bridge,

(17.7a)

and (17.7b)

or substituting XL 5 qL and XC 5 

we have XC XL 5 1 2(qL) 5 

and R2R3 5 R1R4 1

with R1qL 5 

Solving for R4 in the last equation yields

R4 5 q2LCR1

and substituting into the previous equation, we have

R2R3 5 R1(q
2LCR1) 1

Multiply through by C and factor:

CR2R3 5 L(q2C2R2
1 1 1)

and (17.8a)

With additional algebra this yields:

(17.8b)

Equations (17.7) and (17.8) are the balance conditions for the Hay

bridge. Note that each is frequency dependent. For different frequen-

cies, the resistive and capacitive elements must vary for a particular coil

to achieve balance. For a coil placed in the Hay bridge as shown in Fig.

17.42, the resistance and inductance of the coil can be determined by

Eqs. (17.8a) and (17.8b) when balance is achieved.

R4 5 }
1

q2

1

C2

q

R
2
1

C

R2
2

R

R

3
2
1

}

L 5 }
1 1

CR

q

2

2

R

C

3

2R2
1

}

L
}
C

R4
}
qC

L
}
C

L
}
C

1
}
qC

1
}
qC

0 5 R1XL 2 R4XC

R2R3 5 R1R4 1 XC XL

NA
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The bridge of Fig. 17.40 is referred to as a Maxwell bridge when Z5

is replaced by a sensitive galvanometer. This setup is used for induc-

tance measurements when the resistance of the coil is large enough not

to require a Hay bridge.

Application of Eq. (17.6) in the form:

Z2Z3 5 Z4Z1

and substituting

Z1 5 R1 /0° \ XC1
/290° 5 

5 5 

Z2 5 R2

Z3 5 R3

and Z4 5 R4 1 j XL4

we have (R2)(R3) 5 (R4 1 j XL4
)1 2

R2R3 5 

or (R2R3)(R1 2 j XC1
) 5 R1XC1

XL4
2 j R1R4XC1

and R1R2R32 j R2R3XC1
5 R1XC1

XL4
2 j R1R4XC1

so that for balance

R1R2R3 5 R1XC1
XL4

R2R3 5 1 2(2 pf L
4
)

and (17.9)

and R2R3XC1
5 R1R4XC1

so that (17.10)

Note the absence of frequency in Eqs. (17.9) and (17.10).

One remaining popular bridge is the capacitance comparison

bridge of Fig. 17.45. An unknown capacitance and its associated resis-

tance can be determined using this bridge. Application of Eq. (17.6)

will yield the following results:

(17.11)

(17.12)

The derivation of these equations will appear as a problem at the end of

the chapter.

R4 5 }
R

R

2R

1

3
}

C4 5 C3}
R

R

1

2

}

R4 5 }
R

R

2R

1

3
}

L4 5 C1R2R3

1
}
2pfC

1

2j R1R4XC1
1 R1XC1

XL4
}}}

R12j XC1

2j R1XC1
}}
R1 2j XC1

2j R1XC1
}}
R1 2j XC1

R1XC1
/290°

}}
R1 2 j XC1

(R1 /0°)(XC1
/290°)

}}}
R1 2 j XC1

NA

R1

E

C3

R2

Galvanometer

R3 R4

C4

+

–

FIG. 17.45
Capacitance comparison bridge.
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ZC

Z3

Z1 Z2

ZB ZA

a b

c

FIG. 17.46
D-Y configuration.

Z3

Z1 Z2

ZB ZA

ZC

FIG. 17.47
The T and p configurations.

17.7 D-Y, Y-D CONVERSIONS
The D-Y, Y-D (or p-T, T-p as defined in Section 8.12) conversions for

ac circuits will not be derived here since the development corresponds

exactly with that for dc circuits. Taking the D-Y configuration shown

in Fig. 17.46, we find the general equations for the impedances of the Y

in terms of those for the D:

(17.13)

(17.14)

(17.15)

For the impedances of the D in terms of those for the Y, the equations are

ZB 5 (17.16)

ZA 5 (17.17)

ZC 5 (17.18)

Note that each impedance of the Y is equal to the product of the

impedances in the two closest branches of the D, divided by the sum

of the impedances in the D.

Further, the value of each impedance of the D is equal to the sum of the

possible product combinations of the impedances of theY, divided by the

impedances of theY farthest from the impedance to be determined.

Drawn in different forms (Fig. 17.47), they are also referred to as the T

and p configurations.

Z1Z2 1 Z1Z3 1 Z2Z3
}}}

Z3

Z1Z2 1 Z1Z3 1 Z2Z3
}}}

Z1

Z1Z2 1 Z1Z3 1 Z2Z3
}}}

Z2

Z3 5 }
ZA 1

Z

Z

AZ

B

B

1 ZC

}

Z2 5 }
ZA 1

Z

Z

AZ

B

C

1 ZC

}

Z1 5 }
ZA 1

Z

Z

BZ

B

C

1 ZC

}
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In the study of dc networks, we found that if all of the resistors of

the D or Y were the same, the conversion from one to the other could

be accomplished using the equation

RD 5 3RY or RY 5 

For ac networks,

(17.19)

Be careful when using this simplified form. It is not sufficient for all the

impedances of the D or Y to be of the same magnitude: The angle asso-

ciated with each must also be the same.

EXAMPLE 17.20 Find the total impedance ZT of the network of Fig.

17.48.

ZD 5 3ZY or ZY 5 }
Z

3

D
}

RD
}
3

NA

4 V

ZT

4 V

3 V 4 V

2 V 3 V

1 3

2

ZC1 3

2

ZB ZA

1 3

2

Z1

Z3

Z2

FIG. 17.48
Converting the upper D of a bridge configuration to a Y.

Solution:
ZB 5 2j 4 ZA 5 2j 4 ZC 5 3 1 j 4

Z1 5 5 

5 5 

5 4 V /16.13° 5 3.84 V 1 j 1.11 V

Z2 5 5 

5 4 V /16.13° 5 3.84 V 1 j 1.11 V

Recall from the study of dc circuits that if two branches of the Y or D

were the same, the corresponding D or Y, respectively, would also have

(2j 4 V)(3 V 1 j 4 V)
}}}

5 V /253.13°

ZAZC
}}
ZA 1 ZB 1 ZC

20 /236.87°
}}
5 /253.13°

(4 /290°)(5 /53.13°)
}}}

3 2 j 4

(2j 4 V)(3 V 1 j 4 V)
}}}}
(2j 4 V) 1 (2j 4 V) 1 (3 V 1 j 4 V)

ZBZC
}}
ZA 1 ZB 1 ZC
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two similar branches. In this example, ZA 5 ZB. Therefore, Z1 5 Z2,

and

Z3 5 5 

5 5 3.2 V /2126.87° 5 21.92 V 2 j 2.56 V

Replace the D by the Y (Fig. 17.49):

Z1 5 3.84 V 1 j 1.11 V Z2 5 3.84 V 1 j 1.11 V

Z3 5 21.92 V 2 j 2.56 V Z4 5 2 V

Z5 5 3 V

Impedances Z1 and Z4 are in series:

ZT1
5 Z1 1 Z4 5 3.84 V 1 j 1.11 V 1 2 V 5 5.84 V 1 j 1.11 V

5 5.94 V /10.76°

Impedances Z2 and Z5 are in series:

ZT2
5 Z2 1 Z5 5 3.84 V 1 j 1.11 V 1 3 V 5 6.84 V 1 j 1.11 V

5 6.93 V /9.22°

Impedances ZT1
and ZT2

are in parallel:

ZT3
5 5 

5 5 5 3.198 V /10.05°

5 3.15 V 1 j 0.56 V

Impedances Z3 and ZT3
are in series. Therefore,

ZT 5 Z3 1 ZT
3

5 21.92 V 2 j 2.56 V 1 3.15 V 1 j 0.56 V

5 1.23 V 2 j 2.0 V 5 2.35 V /258.41°

EXAMPLE 17.21 Using both the D-Y and Y-D transformations, find

the total impedance ZT for the network of Fig. 17.50.

41.16 V /19.98°
}}

12.87 /9.93°

41.16 V /19.98°
}}

12.68 1 j 2.22

(5.94 V /10.76°)(6.93 V /9.22°)
}}}}}
5.84 V 1 j 1.11 V 1 6.84 V 1 j 1.11 V

ZT1
ZT2

}}
ZT1

1 ZT2

16 V /2180°
}}

5 /253.13°

(2j 4 V)(2j 4 V)
}}

5 V /253.13°

ZAZB
}}
ZA 1 ZB 1 ZC

NA

Z3

2

ZT

Z1 Z2

Z5Z4

1 3

FIG. 17.49
The network of Fig. 17.48 following the

substitution of the Y configuration.

6 V

ZT 3 V

2 V

2 V

3 V1 3

2

6 V

3 V

1 V

2 V 1 V1 V

6 V d

FIG. 17.50
Example 17.21.



774  METHODS OF ANALYSIS AND SELECTED TOPICS (ac)

Solution: Using the D-Y transformation, we obtain Fig. 17.51. In

this case, since both systems are balanced (same impedance in each

branch), the center point d ′ of the transformed D will be the same as

point d of the original Y:

ZY 5 5 5 1 V 1 j 2 V
3 V 1 j 6 V
}}

3

ZD
}
3

NA

ZT

1 3

2

d,d9

2 V

1 V

2 V

1 V

1 V

1 V

2 V

2 V

1 V

1 V

2 V

2 V

FIG. 17.52
Substituting the Y configuration of Fig. 17.51 into the network of Fig. 17.50.

and (Fig. 17.52)

ZT 5 21 2 5 1 V 1 j 2 V
1 V 1 j 2 V
}}

2

Using the Y-D transformation (Fig. 17.53), we obtain

Z∆ 5 3ZY 5 3(1 V 1 j 2 V) 5 3 V 1 j 6 V

6 V

3 V

2 V

2 V

3 V1 3

2

6 V

3 V

1 V

2 V

1 V1 V

6 V d9

1 3

2

FIG. 17.51
Converting a D configuration to a Y configuration.
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Each resulting parallel combination in Fig. 17.54 will have the fol-

lowing impedance:

Z′ 5 5 1.5 V 1 j 3 V
3 V 1 j 6 V
}}

2

NA

6 V

3 V

3 V1 3

2

6 V

3 V

6 V

2 V

2 V

1 V

2 V

1 V1 V

d

1 3

2

FIG. 17.53
Converting the Y configuration of Fig. 17.50 to a D.

6 V

ZT

3 V

1 3

2

6 V
3 V

6 V 6 V

3 V

3 V

6 V

3 V

6 V3 V

FIG. 17.54
Substituting the D configuration of Fig. 17.53 into the network of Fig. 17.50.

and ZT 5 5 5 

5 5 1 V 1 j 2 V

which compares with the above result.

17.8 COMPUTER ANALYSIS
PSpice
Nodal Analysis The first application of PSpice will be to determine

the nodal voltages for the network of Example 17.16 and compare solu-

tions. The network will appear as shown in Fig. 17.55 using elements

2(1.5 V 1 j 3 V)
}}

3

2Z′
}

3

2(Z′)2

}
3Z′

Z′(2Z′)
}
Z′ 1 2Z′
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that were determined from the reactance level at a frequency of 1 kHz.

There is no need to continually use 1 kHz. Any frequency will do, but

remember to use the chosen frequency to find the network components

and when setting up the simulation.

For the current sources, ISIN was chosen so that the phase angle

could be specified (even though it is 0°), although the symbol does not

have the arrow used in the text material. The direction must be recog-

nized as pointing from the 1 to 2 sign of the source. That requires that

the sources I1 and I2 be set as shown in Fig. 17.55. The source I2 is

reversed by using the Mirror Vertically option obtained by right-

clicking the source symbol on the screen. Setting up the ISIN source is

the same as that employed with the VSIN source. It can be found under

the SOURCE library, and its attributes are the same as for the VSIN

source. For each source, IOFF is set to 0 A, and the amplitude is the

peak value of the source current. The frequency will be the same for

each source. Then VPRINT1 is selected from the SPECIAL library

and placed to generate the desired nodal voltages. Finally the remaining

elements are added to the network as shown in Fig. 17.55. For each

source the symbol is double-clicked to generate the Property Editor

dialog box. AC is set at the 6-A level for the I1 source and at 4 A for

the I2 source, followed by Display and Name and Value for each. It

will appear as shown in Fig. 17.55. A double-click on each VPRINT1

option will also provide the Property Editor, so OK can be added

under AC, MAG, and PHASE. For each quantity, Display is selected

followed by Name and Value and OK. Then Value is selected and

VPRINT1 is displayed as Value only. Selecting Apply and leaving the

dialog box will result in the listing next to each source in Fig. 17.55.

For VPRINT2 the listing on Value must first be changed from

VPRINT1 to VPRINT2 before selecting Display and Apply.

NA

FIG. 17.55
Using PSpice to verify the results of Example 17.16.



COMPUTER ANALYSIS  777

Now the New Simulation Profile icon is selected and ACNodal

entered as the Name followed by Create. In the Simulation Settings

dialog box, AC Sweep is selected, and the Start Frequency and End

Frequency are set at 1 kHz with 1 for the Points/Decade. Click OK,

and select the Run PSpice icon; a SCHEMATIC1 screen will result.

Exiting (X) will bring us back to the Orcad Capture window. Select-

ing PSpice followed by View Output File will result in the display of

Fig. 17.56, providing exactly the same results as obtained in Example

17.16 with V1 5 20.8 V /2126.9°. The other nodal voltage is 8.617 V

/215.09°.

NA

FIG. 17.56
Output file for the nodal voltages for the network of Fig. 17.55.

Current-Controlled Current Source (CCCS) Our interest will

now turn to controlled sources in the PSpice environment. Controlled

sources are not particularly difficult to apply once a few important ele-

ments of their use are understood. The network of Fig. 17.14 has a

current-controlled current source in the center leg of the configuration.

The magnitude of the current source is k times the current through resis-

tor R1, where k can be greater or less than 1. The resulting schematic,

appearing in Fig. 17.57, seems quite complex in the area of the con-

trolled source, but once the role of each component is understood, it

will not be that difficult to understand. First, since it is the only new

element in the schematic, let us concentrate on the controlled source.

Current-controlled current sources (CCCS) are called up under the

ANALOG library as F and appear as shown in the center of Fig. 17.57.
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Take special note of the direction of the current in each part of the sym-

bol. In particular, note that the sensing current of F has the same direc-

tion as the defining controlling current in Fig. 17.14. In addition, note

that the controlled current source also has the same direction as the

source in Fig. 17.14. If we double-click on the CCCS symbol, the

Property Editor dialog box will appear with the GAIN (k as described

above) set at 1. In this example the gain must be set at 0.7, so click on

the region below the GAIN label and enter 0.7. Then select Display

followed by Name and Value-OK. Exit the Property Editor, and

GAIN 5 0.7 will appear with the CCCS as shown in Fig. 17.57.

The other new component in this schematic is IPRINT; it can be

found in the SPECIAL library. It is used to tell the program to list the

current in the branch of interest in the output file. If you fail to tell the

program which output data you would like, it will simply run through

the simulation and list specific features of the network but will not pro-

vide any voltages or currents. In this case the current I2 through the

resistor R2 is desired. Double-clicking on the IPRINT component will

result in the Property Editor dialog box with a number of elements

that need to be defined—much like that for VPRINT. First enter OK

beneath AC and follow with Display-Name and Value-OK. Repeat for

MAG and PHASE, and then select Apply before leaving the dialog

box. The OK is designed simply to tell the software program that these

are the quantities that it is “ok” to generate and provide. The purpose of

the Apply at the end of each visit to the Property Editor dialog box is

to “apply” the changes made to the network under investigation. When

you exit the Property Editor, the three chosen parameters will appear

on the schematic with the OK directive. You may find that the labels

FIG. 17.57
Using PSpice to verify the results of Example 17.8.
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will appear all over the IPRINT symbol. No problem—just click on

each, and move to a more convenient location.

The remaining components of the network should be fairly familiar,

but don’t forget to Mirror Vertically the voltage source E2. In addi-

tion, do not forget to call up the Property Editor for each source and

set the level of AC, FREQ, VAMPL, and VOFF and be sure that the

PHASE is set on the default value of 0°. The value appears with each

parameter in Fig. 17.57 for each source. Always be sure to select Apply

before leaving the Property Editor. After placing all the components

on the screen, you must connect them with a Place wire selection. Nor-

mally, this is pretty straightforward. However, with controlled sources

there is often the need to cross over wires without making a connec-

tion. In general, when you’re placing a wire over another wire and you

don’t want a connection to be made, click a spot on one side of the wire

to be crossed to create the temporary red square. Then cross the wire,

and make another click to establish another red square. If the connec-

tion is done properly, the crossed wire should not show a connection

point (a small red dot). In this example the top of the controlling cur-

rent was connected first from the E1 source. Then a wire was connected

from the lower end of the sensing current to the point where a 90° turn

up the page was to be made. The wire was clicked in place at this point

before crossing the original wire and clicked again before making the

right turn to resistor R1. You will not find a small red dot where the

wires cross.

Now for the simulation. In the Simulation Settings dialog box,

select AC Sweep/Noise with a Start and End Frequency of 1 kHz.

There will be 1 Point/Decade. Click OK, and select the Run Spice

key; a SCHEMATIC1 will result that should be exited to obtain the

Orcad Capture screen. Select PSpice followed by View Output File,

and scroll down until you read AC ANALYSIS such as appearing in

Fig. 17.58. The magnitude of the desired current is 1.615 mA with a

phase angle of 0°, a perfect match with the theoretical analysis to fol-

low. One would expect a phase angle of 0° since the network is com-

posed solely of resistive elements.

The equations obtained earlier using the supermesh approach were 

E 2 I1Z1 2 I2Z2 1 E2 5 0 or I1Z1 1 I2Z2 5 E1 1 E2

NA

FIG. 17.58
The output file for the mesh current I2 of Fig. 17.14.



3. Convert the current sources of Fig. 17.60 to voltage

sources.
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and kI 5 kI1 5 I1 2 I2

resulting in I1 5 5 5 5 3.333I2

so that I1(1 kV) 1 I2(1 kV) 5 7 V (from above)

becomes (3.333I2)1 kV 1 I2 (1 kV) 5 7 V

or (4.333 kV)I2 5 7 V

and I2 5 5 1.615 mA /0°

confirming the computer solution.

7 V
}}
4.333 kV

I2
}
0.3

I2
}
1 2 0.7

I2
}
1 2 k

5.6 V

E  =  20 V  ∠  20°

8.2 V

(a)

2 V

E  =  60 V  ∠  30°
5 V

(b)

+

–

+

–

FIG. 17.59
Problem 2.

(a) (b)

6 V 2 A / 120°10 V I

15 V

16 V

I = 0.5 A / 60°

FIG. 17.60
Problem 3.

PROBLEMS
SECTION 17.2 Independent versus Dependent
(Controlled) Sources

1. Discuss, in your own words, the difference between a con-

trolled and an independent source.

SECTION 17.3 Source Conversions
2. Convert the voltage sources of Fig. 17.59 to current

sources.



PROBLEMS  781NA

(a) (b)

R

4 kV

+

–
V

+

–
hI R 50 kVI

(h = 50)

Vm

(m = 16)m

FIG. 17.61
Problem 4.

4. Convert the voltage source of Fig. 17.61(a) to a current

source and the current source of Fig. 17.61(b) to a volt-

age source.

+

E1  =  10 V ∠ 0°
–

R

4 V 8 V

6 V

+

–

E2  =  40 V  ∠  60°

(b)(a)

+

–

R 50 V 20 V

E1  =  5 V  ∠  30°
+

–
E2 20 V  ∠  0°

60 V

FIG. 17.62
Problems 5 and 34.

+
E1  =

20  V  ∠  50°
–

R1

12 V
1 V

E3  =  40 V  ∠  0°

(a)

12 V 3 V

E2

+

–

+

–

60 V  ∠ 70°

(b)

20 V
10 V

E  =  30 V  ∠  0°

10 V2 V +

–

20 V

I  =
6 A  ∠  0°

R1

FIG. 17.63
Problems 6 and 16.

SECTION 17.4 Mesh Analysis
5. Write the mesh equations for the networks of Fig. 17.62.

Determine the current through the resistor R.

6. Write the mesh equations for the networks of Fig. 17.63.

Determine the current through the resistor R1.



9. Using mesh analysis, determine the current IL (in terms

of V) for the network of Fig. 17.66.
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*7. Write the mesh equations for the networks of Fig. 17.64.

Determine the current through the resistor R1.

R1

6 V

E1  =  20 V ∠ 0°

8 V

5 V 4 V

5 V

6 V 4 V

+

–

+

–

E2  =  40 V ∠ 60°

(a)

5 V

E1  =  25 V ∠ 0°

5 V

20 V

15 V+

–

(b)

R1

10 V

+

–
E2  =  75 V ∠ 20°

6 V

20 V

10 V 20 V

80 V

FIG. 17.65
Problems 8, 18, and 19.

XL 4 kV

+

–
28 V

+

–

5 kV

10 kV

rp

Rp

1 kVRL

VL

IL

+

–
V

FIG. 17.66
Problem 9.

3 V

(b)

10 V

15 V
+

–

4 V

R1

+

E1  =  60 V  ∠  0°
–

4 V

(a)

3 V

1 V

+

–

E2  =  120 V  ∠  120°

R1

8 V

6 V

2 V

+

–

E1  =  220 V  ∠  0° E2  =  100 V  ∠  90°

15 V

FIG. 17.64
Problems 7, 17, and 35.

*8. Write the mesh equations for the networks of Fig. 17.65.

Determine the current through the resistor R1.
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XL 4 kV

+

–

50I 40 kV

0.2 kV

R VL

I

XC

R1 8 kV

IL

FIG. 17.67
Problem 10.

10 V∠ 0° 2 kV Vx

+

–

1 kV

6 Vx

+

–

4 kV
+

–

FIG. 17.68
Problems 11 and 36.

5 V∠ 0° 10 kV

2.2 kV

5 kV

+

–

4 mA ∠ 0°

+
20 V∠ 0°

–

FIG. 17.69
Problems 12 and 37.

*11. Write the mesh equations for the network of Fig. 17.68,

and determine the current through the 1-kV and 2-kV

resistors.

6 mA ∠ 0° 6 kV

4 kV

1 kV

+

–

0.1 Vs

+
10 V ∠ 0°

–

Vs

FIG. 17.70
Problems 13 and 38.

*13. Write the mesh equations for the network of Fig. 17.70,

and determine the current through the inductive element.

*10. Using mesh analysis, determine the current IL (in terms

of I) for the network of Fig. 17.67.

*12. Write the mesh equations for the network of Fig. 17.69,

and determine the current through the 10-kV resistor.



SECTION 17.5 Nodal Analysis
14. Determine the nodal voltages for the networks of Fig.

17.71.
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I2

5 V

3 A ∠ 150°
4 V

1 V

8 V

4 V

I1  =  2 A ∠ 30°

(a)

6 V

I2  =  6 A ∠ 90°

4 V

5 V 4 V

4 A ∠ 0°

(b)

8 V

2 V
I1

FIG. 17.73
Problem 20.

15. Determine the nodal voltages for the networks of Fig.

17.72.

16. Determine the nodal voltages for the network of Fig.

17.63(b).

17. Determine the nodal voltages for the network of Fig.

17.64(b).

*18. Determine the nodal voltages for the network of Fig.

17.65(a).

*19. Determine the nodal voltages for the network of Fig.

17.65(b).

*20. Determine the nodal voltages for the networks of Fig.

17.73.

I1  =  3 A ∠ 0° 4 V

5 V

(a)

I2  =  5 A ∠ 30°

2 V

(b)

I2  =  4 A ∠ 80°

3 V

2 V

4 V

6 V 8 V

I1  =  0.6 A ∠ 20°

FIG. 17.71
Problems 14 and 39.

4 V+

–

E  =  30 V ∠ 50°

6 V

4 V

2 V

5 V

(a)

I  =  0.04 A ∠ 90°

+

–

E  =  50 V ∠ 120°

10 V

8 V

2 V

(b)

I  =  0.8 A ∠ 70°
10 V

FIG. 17.72
Problem 15.



PROBLEMS  785NA

5 mA ∠ 0°

2 kV

1 kV

Ix

8 mA ∠ 0°4 kV

4Ix

FIG. 17.74
Problems 21 and 40.

12 mA ∠ 0°

2 kV

1 kV 4 mA ∠ 0°3 kV

10 V ∠ 0°
+–

FIG. 17.75
Problems 22 and 41.

*21. Write the nodal equations for the network of Fig. 17.74,

and find the voltage across the 1-kV resistor.

12 mA ∠ 0°

1 kV

2 kV

2 mA ∠ 0°

+ –Vx

3.3 kV

6Vx

+

–

FIG. 17.76
Problems 23 and 42.

5 mA ∠ 0°

1 kV

2 kV

+–

I1

1 kV

2Vx

Vx

+

–

3I1

FIG. 17.77
Problems 24 and 43.

*22. Write the nodal equations for the network of Fig. 17.75,

and find the voltage across the capacitive element.

*23. Write the nodal equations for the network of Fig. 17.76,

and find the voltage across the 2-kV resistor.

*24. Write the nodal equations for the network of Fig. 17.77,

and find the voltage across the 2-kV resistor.



R1

1 kV

E

+

–

Lx

0.1 kV

1 mF IG  =  0

CRs 1 kV
R2

R3

q  =  1000

Rx

0.1 kV

FIG. 17.81
Problem 28.

R1

4 kV

Es = 10 V ∠ 0°

+

–

XL

4 kV 4 kV

4 kV
XC

Rs 1 kV
R2

4 kV
R3

FIG. 17.80
Problem 27.

*25. For the network of Fig. 17.78, determine the voltage VL

in terms of the voltage Ei.
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SECTION 17.6 Bridge Networks (ac)
26. For the bridge network of Fig. 17.79:

a. Is the bridge balanced?

b. Using mesh analysis, determine the current through

the capacitive reactance.

c. Using nodal analysis, determine the voltage across the

capacitive reactance.

27. For the bridge network of Fig. 17.80:

a. Is the bridge balanced?

b. Using mesh analysis, determine the current through

the capacitive reactance.

c. Using nodal analysis, determine the voltage across the

capacitive reactance.

28. The Hay bridge of Fig. 17.81 is balanced. Using Eq.

(17.3), determine the unknown inductance Lx and resis-

tance Rx.

R1 1 kV

I1

Ei

+

–
R250 kV50I1 RL 50 kV50I2

R3

1 kV

VL

+

–

I2

FIG. 17.78
Problem 25.

R1

5 kV

Es = 10 V ∠ 0°

+

–

XL1

2.5 kV

XL2

4 kV

5 kV

XC

Rs 1 kV
R2

8 kV

FIG. 17.79
Problem 26.



R1  =  2 kV

E

+

–
Lx

4 kV

3 mF

IG

C1

R2

R3q  =  1000
Rx

0.5 kV

1 kV

6 H

FIG. 17.82
Problem 29.

R1

E

+

–
L3 Lx

Rs

R2

R3 Rx

FIG. 17.83
Problem 31.
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29. Determine whether the Maxwell bridge of Fig. 17.82 is

balanced (q 5 1000 rad/s).

8 V

E  =  120 V ∠ 0°
+

–

8 V

5 V

I

YT

ZT

4 V

6 V

(a)

9 V

E  =  60 V ∠ 0°
+

–
9 V12 V

I

YT

ZT

12 V

3 V

(b)

3 V

12 V

2 V

9 V

FIG. 17.84
Problem 32.

30. Derive the balance equations (17.11) and (17.12) for the

capacitance comparison bridge.

31. Determine the balance equations for the inductance

bridge of Fig. 17.83.

SECTION 17.7 D-Y, Y-D Conversions
32. Using the D-Y or Y-D conversion, determine the current

I for the networks of Fig. 17.84.
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SECTION 17.8 Computer Analysis
PSpice or Electronics Workbench
34. Determine the mesh currents for the network of Fig.

17.62(a).

35. Determine the mesh currents for the network of Fig.

17.64(a).

*36. Determine the mesh currents for the network of Fig.

17.68.

*37. Determine the mesh currents for the network of Fig.

17.69.

*38. Determine the mesh currents for the network of Fig.

17.70.

39. Determine the nodal voltages for the network of Fig.

17.71(b).

*40. Determine the nodal voltages for the network of Fig.

17.74.

*41. Determine the nodal voltages for the network of Fig.

17.75.

*42. Determine the nodal voltages for the network of Fig.

17.76.

*43. Determine the nodal voltages for the network of Fig.

17.77.

Programming Language (C11, QBASIC, Pascal, etc.)
44. Write a computer program that will provide a general

solution for the network of Fig. 17.10. That is, given the

reactance of each element and the parameters of the

source voltages, generate a solution in phasor form for

both mesh currents.

45. Repeat Problem 35 for the nodal voltages of Fig. 17.30.

46. Given a bridge composed of series impedances in each

branch, write a program to test the balance condition as

defined by Eq. (17.6).

33. Using the D-Y or Y-D conversion, determine the current

I for the networks of Fig. 17.85. (E 5 100 V /0° in each

case.)

FIG. 17.85
Problem 33.

E

+

–

12 V

I

YT

ZT

16 V

(a)

3 V3 V

12 V 12 V
3 V

16 V 16 V

E

+

–

I

YT

ZT

(b)

5 V

5 V

6 V

5 V 5 V

5 V



GLOSSARY  789

GLOSSARY
Bridge network A network configuration having the appear-

ance of a diamond in which no two branches are in series or

parallel.

Capacitance comparison bridge A bridge configuration

having a galvanometer in the bridge arm that is used to deter-

mine an unknown capacitance and associated resistance.

Delta (D) configuration A network configuration having the

appearance of the capital Greek letter delta.

Dependent (controlled) source A source whose magnitude

and/or phase angle is determined (controlled) by a current

or voltage of the system in which it appears.

Hay bridge A bridge configuration used for measuring the

resistance and inductance of coils in those cases where the

resistance is a small fraction of the reactance of the coil.

Independent source A source whose magnitude is indepen-

dent of the network to which it is applied. It displays its ter-

minal characteristics even if completely isolated.

NA

Maxwell bridge A bridge configuration used for inductance

measurements when the resistance of the coil is large

enough not to require a Hay bridge.

Mesh analysis A method through which the loop (or mesh)

currents of a network can be determined. The branch cur-

rents of the network can then be determined directly from

the loop currents.

Nodal analysis A method through which the nodal voltages

of a network can be determined. The voltage across each

element can then be determined through application of

Kirchhoff’s voltage law.

Source conversion The changing of a voltage source to a

current source, or vice versa, which will result in the same

terminal behavior of the source. In other words, the external

network is unaware of the change in sources.

Wye (Y) configuration A network configuration having the

appearance of the capital letter Y.





Network Theorems (ac)

Th18

18.1 INTRODUCTION
This chapter will parallel Chapter 9, which dealt with network theorems

as applied to dc networks. It would be time well spent to review each

theorem in Chapter 9 before beginning this chapter because many of the

comments offered there will not be repeated.

Due to the need for developing confidence in the application of the

various theorems to networks with controlled (dependent) sources,

some sections have been divided into two parts: independent sources

and dependent sources.

Theorems to be considered in detail include the superposition theo-

rem, Thévenin’s and Norton’s theorems, and the maximum power theo-

rem. The substitution and reciprocity theorems and Millman’s theorem

are not discussed in detail here because a review of Chapter 9 will

enable you to apply them to sinusoidal ac networks with little difficulty.

18.2 SUPERPOSITION THEOREM
You will recall from Chapter 9 that the superposition theorem elimi-

nated the need for solving simultaneous linear equations by considering

the effects of each source independently. To consider the effects of each

source, we had to remove the remaining sources. This was accom-

plished by setting voltage sources to zero (short-circuit representation)

and current sources to zero (open-circuit representation). The current

through, or voltage across, a portion of the network produced by each

source was then added algebraically to find the total solution for the

current or voltage.

The only variation in applying this method to ac networks with inde-

pendent sources is that we will now be working with impedances and

phasors instead of just resistors and real numbers.

The superposition theorem is not applicable to power effects in ac

networks since we are still dealing with a nonlinear relationship. It can

be applied to networks with sources of different frequencies only if



792  NETWORK THEOREMS (ac)

the total response for each frequency is found independently and the

results are expanded in a nonsinusoidal expression, as appearing in

Chapter 25.

One of the most frequent applications of the superposition theorem

is to electronic systems in which the dc and ac analyses are treated sep-

arately and the total solution is the sum of the two. It is an important

application of the theorem because the impact of the reactive elements

changes dramatically in response to the two types of independent

sources. In addition, the dc analysis of an electronic system can often

define important parameters for the ac analysis. Example 18.4 will

demonstrate the impact of the applied source on the general configura-

tion of the network.

We will first consider networks with only independent sources to

provide a close association with the analysis of Chapter 9.

Independent Sources

EXAMPLE 18.1 Using the superposition theorem, find the current I

through the 4-V reactance (XL2
) of Fig. 18.1.

Th

XL2
4 V

–

+

XC 3 V
I

E2 =  5 V ∠ 0°E1 =  10 V ∠ 0°

–

+

XL1
4 V

FIG. 18.1
Example 18.1.

Solution: For the redrawn circuit (Fig. 18.2),

Z1 5 1j XL1
5 j 4 V

Z2 5 1j XL2
5 j 4 V

Z3 5 2j XC 5 2j 3 V

Considering the effects of the voltage source E1 (Fig. 18.3), we have

Z2|3 5 5 5 5 2j 12 V

5 12 V /290°

Is1
5 5 5

5 1.25 A /90°

and

I′ 5 (current divider rule)

5 5 5 3.75 A /290°
3.75 A
}

j 1

(2j 3 V )( j 1.25 A)
}}}

j 4 V 2 j 3 V

Z3Is1
}
Z2 1 Z3

10 V /0°
}}
8 V /290°

10 V /0°
}}
2j 12 V 1 j 4 V

E1
}
Z2|3 1 Z1

12 V
}

j

( j 4 V)(2j 3 V)
}}

j 4 V 2 j 3 V

Z2Z3
}
Z2 1 Z3FIG. 18.2

Assigning the subscripted impedances to the 

network of Fig. 18.1.

–

+

I

E2E1

–

+

Z1

Z2

Z3
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Z1\2 5 5 5 j 2 V

Is2
5 5 5 5 5 A /90°

and I″ 5 5 2.5 A /90°

The resultant current through the 4-V reactance XL2
(Fig. 18.5) is

I 5 I′ 2 I″
5 3.75 A /290° 2 2.50 A /90° 5 2j 3.75 A 2 j 2.50 A

5 2j 6.25 A

I 5 6.25 A /290°

EXAMPLE 18.2 Using superposition, find the current I through the

6-V resistor of Fig. 18.6.

Is2
}
2

5 V /0°
}}
1 V /290°

5 V /0°
}}
j 2 V 2 j 3 V

E2
}}
Z1|2 1 Z3

j 4 V
}

2

Z1
}
N

Th

I9

E1

–

+

Z1

Z2

Z3

E1

–

+

Z1

Z2\3

Is1
Is1

FIG. 18.3
Determining the effect of the voltage source E1 on the current I of the network of Fig. 18.1.

I0
E2

–

+

Z1

Z2

Z3

E2

–

+

Z3

Z1\2

Is2
Is2

FIG. 18.4
Determining the effect of the voltage source E2 on the current I of the network

of Fig. 18.1.

FIG. 18.5
Determining the resultant current for the 

network of Fig. 18.1.

XC =  8 V

I

E1 =  20 V ∠ 30°

–

+

R =  6 VXL =  6 V

I1 2 A ∠ 0°

FIG. 18.6
Example 18.2.

Considering the effects of the voltage source E2 (Fig. 18.4), we have

XL
2

4 V I

I′

I′′



R

6 V

V′′6Ω+ –

V′6Ω+ –

V6Ω+ –

I

I′

R

6 V
I′′
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Solution: For the redrawn circuit (Fig. 18.7),

Z1 5 j 6 V Z2 5 6 2 j 8 V

Consider the effects of the current source (Fig. 18.8). Applying the cur-

rent divider rule, we have

I′ 5 5 5

5

I′ 5 1.9 A /108.43°

Consider the effects of the voltage source (Fig. 18.9). Applying Ohm’s

law gives us

I″ 5 5 5

5 3.16 A /48.43°

The total current through the 6-V resistor (Fig. 18.10) is

I 5 I′ 1 I″
5 1.9 A /108.43° 1 3.16 A /48.43°

5 (20.60 A 1 j 1.80 A) 1 (2.10 A 1 j 2.36 A)

5 1.50 A 1 j 4.16 A

I 5 4.42 A /70.2°

EXAMPLE 18.3 Using superposition, find the voltage across the 6-V

resistor in Fig. 18.6. Check the results against V6V 5 I(6 V), where I

is the current found through the 6-V resistor in Example 18.2.

Solution: For the current source,

V′6V 5 I′(6 V) 5 (1.9 A /108.43°)(6 V) 5 11.4 V /108.43°

For the voltage source,

V″6V 5 I″(6) 5 (3.16 A /48.43°)(6 V) 5 18.96 V /48.43°

The total voltage across the 6-V resistor (Fig. 18.11) is

V6V 5 V′6V 1 V″6V

5 11.4 V /108.43° 1 18.96 V /48.43°

5 (23.60 V 1 j 10.82 V) 1 (12.58 V 1 j 14.18 V)

5 8.98 V 1 j 25.0 V

V6V 5 26.5 V /70.2°

Checking the result, we have

V6V 5 I(6 V) 5 (4.42 A /70.2°)(6 V)

5 26.5 V /70.2° (checks)

20 V /30°
}}
6.32 V /218.43°

E1
}
Z1 1 Z2

E1
}
ZT

12 A /90°
}}
6.32 /218.43°

j 12 A
}
6 2 j 2

( j 6 V)(2 A)
}}}
j 6 V 1 6 V 2 j 8 V

Z1I1
}
Z1 1 Z2

Th

–

I

Z1 Z2

E1

+

I1

FIG. 18.7
Assigning the subscripted impedances to the

network of Fig. 18.6.

I9

Z1 Z2

I1

FIG. 18.8
Determining the effect of the current source I1

on the current I of the network of Fig. 18.6.

I0

Z1 Z2

–

E1

+

FIG. 18.9
Determining the effect of the voltage source

E1 on the current I of the network of 

Fig. 18.6.

FIG. 18.10
Determining the resultant current I for the

network of Fig. 18.6.

FIG. 18.11
Determining the resultant voltage V6V for the network of Fig. 18.6.
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Solution: For the dc source, recall that for dc analysis, in the steady

state the capacitor can be replaced by an open-circuit equivalent, and

the inductor by a short-circuit equivalent. The result is the network of

Fig. 18.13.

The resistors R1 and R3 are then in parallel, and the voltage V3 can

be determined using the voltage divider rule:

R′ 5 R1 \ R3 5 0.5 kV \ 3 kV 5 0.429 kV

and V3 5

5 5

V3 > 3.6 V

For ac analysis, the dc source is set to zero and the network is

redrawn, as shown in Fig. 18.14.

5.148 V
}

1.429

(0.429 kV)(12 V)
}}
0.429 kV 1 1 kV

R′E1
}
R′ 1 R2

Th

–

+

R2 1 kV

R1

0.5 kV

XL

2 kV

R3 3 kV v3XC 10 kVE2  =  4 V ∠0°
–

+

E1  =  12 V

FIG. 18.12
Example 18.4.

EXAMPLE 18.4 For the network of Fig. 18.12, determine the sinu-

soidal expression for the voltage v3 using superposition.

–

+

R2 1 kV

R1

0.5 kV

R3 3 kV V3

E1  =  12 V

FIG. 18.13
Determining the effect of the dc voltage source

E1 on the voltage v3 of the network of 

Fig. 18.12.

XC  =  10 kV

–

+
R2  =  1 kV

R1

0.5 kV

R3  =  3 kV V3

XL

2 kV

E2  =  4 V ∠0°
–

+

The block impedances are then defined as in Fig. 18.15, and series-

parallel techniques are applied as follows:

Z1 5 0.5 kV /0°

Z2 5 (R2 /0° \ (XC /290°)

5 5

5 0.995 kV /25.71°

10 kV /290°
}}
10.05 /284.29°

(1 kV /0°)(10 kV /290°)
}}}

1 kV 2 j 10 kV

FIG. 18.14
Redrawing the network of Fig. 18.12 to determine the effect of the ac voltage

source E2.

–

Is

Z1

Z2E2

+

Z3

ZT

V3

–

+

I3

FIG. 18.15
Assigning the subscripted impedances to the 

network of Fig. 18.14.



(0.5,0)1((0.995/25.71)*(3.61/33.69))/((0.995/25.71)1(3.61/33.69)) Enter
(1.311E0,35.373E23)

Ans c Pol
(1.312E0/1.545E0)
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Z3 5 R3 1 j XL 5 3 kV 1 j 2 kV 5 3.61 kV /33.69°

and

ZT 5 Z1 1 Z2 \ Z3

5 0.5 kV 1 (0.995 kV /25.71°) \ (3.61 kV /33.69°)

5 1.312 kV /1.57°

Calculator Performing the above on the TI-86 calculator gives the

following result:

Th

CALC. 18.1

Is 5 5 5 3.05 mA /21.57°

Current divider rule:

I3 5 5

5 0.686 mA /232.74°

with

V3 5 (I3 /v)(R3 /0°)

5 (0.686 mA /232.74°)(3 kV /0°)

5 2.06 V /232.74°

The total solution:

v3 5 v3 (dc) 1 v3 (ac)

5 3.6 V 1 2.06 V /232.74°

v3 5 3.6 1 2.91 sin(qt 2 32.74°)

The result is a sinusoidal voltage having a peak value of 2.91 V rid-

ing on an average value of 3.6 V, as shown in Fig. 18.16.

(0.995 kV /25.71°)(3.05 mA /21.57°)
}}}}}
0.995 kV /25.71° 1 3.61 kV /33.69°

Z2Is
}
Z2 1 Z3

4 V /0°
}}
1.312 kV /1.57°

E2
}
ZT

6.51 V

3.6 V

0.69 V

0

v3
32.74°

qt

FIG. 18.16
The resultant voltage v3 for the network of Fig. 18.12.

Dependent Sources
For dependent sources in which the controlling variable is not deter-

mined by the network to which the superposition theorem is to be

applied, the application of the theorem is basically the same as for inde-



SUPERPOSITION THEOREM  797

pendent sources. The solution obtained will simply be in terms of the

controlling variables.

EXAMPLE 18.5 Using the superposition theorem, determine the cur-

rent I2 for the network of Fig. 18.17. The quantities m and h are con-

stants.

Th

–

+
R2 6 V

XL 8 V

hI

R1

4 V
I2I

–+ V

Vm

FIG. 18.17
Example 18.5.

Solution: With a portion of the system redrawn (Fig. 18.18),

Z1 5 R1 5 4 V Z2 5 R2 1 j XL 5 6 1 j 8 V

For the voltage source (Fig. 18.19),

I′ 5 5 5

5 5 0.078 mV/V /238.66°

For the current source (Fig. 18.20),

I″ 5 5 5 4(0.078)hI /238.66°

5 0.312hI /238.66°

The current I2 is

I2 5 I′ 1 I″
5 0.078 mV/V /238.66° 1 0.312hI /238.66°

For V 5 10 V /0°, I 5 20 mA /0°, m 5 20, and h 5 100,

I2 5 0.078(20)(10 V /0°)/V /238.66°

1 0.312(100)(20 mA/0°)/238.66°

5 15.60 A /238.66° 1 0.62 A /238.66°

I2 5 16.22 A /238.66°

For dependent sources in which the controlling variable is deter-

mined by the network to which the theorem is to be applied, the depen-

dent source cannot be set to zero unless the controlling variable is also

zero. For networks containing dependent sources such as indicated in

Example 18.5 and dependent sources of the type just introduced above,

the superposition theorem is applied for each independent source and

each dependent source not having a controlling variable in the portions

of the network under investigation. It must be reemphasized that depen-

(4 V)(hI)
}}
12.8 V /38.66°

Z1(hI)
}
Z1 1 Z2

mV
}}
12.8 V /38.66°

mV
}}
10 V 1 j 8 V

mV
}}}
4 V 1 6 V 1 j 8 V

mV
}
Z1 1 Z2

–

Z1

+

Z2

I2

hI Vm

FIG. 18.18
Assigning the subscripted impedances to the

network of Fig. 18.17.

–

Z1

  V

+

Z2

I9

m

FIG. 18.19
Determining the effect of the 

voltage-controlled voltage source on the

current I2 for the network of Fig. 18.17.

Z1

Z2

I0

hI1

FIG. 18.20
Determining the effect of the 

current-controlled current source on the

current I2 for the network of Fig. 18.17.
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dent sources are not sources of energy in the sense that, if all indepen-

dent sources are removed from a system, all currents and voltages must

be zero.

EXAMPLE 18.6 Determine the current IL through the resistor RL of

Fig. 18.21.

Solution: Note that the controlling variable V is determined by the

network to be analyzed. From the above discussions, it is understood

that the dependent source cannot be set to zero unless V is zero. If we

set I to zero, the network lacks a source of voltage, and V 5 0 with 

mV 5 0. The resulting IL under this condition is zero. Obviously, there-

fore, the network must be analyzed as it appears in Fig. 18.21, with the

result that neither source can be eliminated, as is normally done using

the superposition theorem.

Applying Kirchhoff’s voltage law, we have

VL 5 V 1 mV 5 (1 1 m)V

and IL 5 5

The result, however, must be found in terms of I since V and mV are

only dependent variables.

Applying Kirchhoff’s current law gives us

I 5 I1 1 IL 5 1

and I 5 V1 1 2
or V 5

Substituting into the above yields

IL 5 5 1 2
Therefore, IL 5

18.3 THÉVENIN’S THEOREM
Thévenin’s theorem, as stated for sinusoidal ac circuits, is changed

only to include the term impedance instead of resistance; that is,

any two-terminal linear ac network can be replaced with an

equivalent circuit consisting of a voltage source and an impedance in

series, as shown in Fig. 18.22.

Since the reactances of a circuit are frequency dependent, the Thévenin

circuit found for a particular network is applicable only at one fre-

quency.

The steps required to apply this method to dc circuits are repeated

here with changes for sinusoidal ac circuits. As before, the only change

(1 1 m)R1I
}}
RL 1 (1 1 m)R1

I
}}}
(1/R1) 1 [(1 1 m)/RL]

(1 1 m)
}

RL

(1 1 m)V
}

RL

I
}}}
(1/R1) 1 [(1 1 m)/RL]

1 1 m
}

RL

1
}
R1

(1 1 m)V
}

RL

V
}
R1

(1 1 m)V
}

RL

VL
}
RL

Th

RL

mV– +

ILI1

R1 VI
–

+

FIG. 18.21
Example 18.6.

–

+

ZTh

ETh

FIG. 18.22
Thévenin equivalent circuit for ac networks.
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is the replacement of the term resistance with impedance. Again,

dependent and independent sources will be treated separately.

Example 18.9, the last example of the independent source section,

will include a network with dc and ac sources to establish the ground-

work for possible use in the electronics area.

Independent Sources
1. Remove that portion of the network across which the Thévenin

equivalent circuit is to be found.

2. Mark (C, ●, and so on) the terminals of the remaining two-terminal

network.

3. Calculate ZTh by first setting all voltage and current sources to

zero (short circuit and open circuit, respectively) and then finding

the resulting impedance between the two marked terminals.

4. Calculate ETh by first replacing the voltage and current sources

and then finding the open-circuit voltage between the marked

terminals.

5. Draw the Thévenin equivalent circuit with the portion of the

circuit previously removed replaced between the terminals of the

Thévenin equivalent circuit.

EXAMPLE 18.7 Find the Thévenin equivalent circuit for the network

external to resistor R in Fig. 18.23.

Th

R2 V

–

+

E  =  10 V ∠ 0°

XL  =  8 V

XC

Thévenin

FIG. 18.23
Example 18.7.

Solution:
Steps 1 and 2 (Fig. 18.24):

E  =  10 V ∠ 0°
–

+

Z1

Z2

Thévenin

FIG. 18.24
Assigning the subscripted impedances to the network of Fig. 18.23.

Z1 5 j XL 5 j 8 V Z2 5 2j XC 5 2j 2 V

Step 3 (Fig. 18.25):

Z1

Z2

ZTh

FIG. 18.25
Determining the Thévenin impedance for the 

network of Fig. 18.23.
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ZTh 5 5 5 5

5 2.67 V /290°

Step 4 (Fig. 18.26):

ETh 5 (voltage divider rule)

5 5 5 3.33 V /2180°

Step 5: The Thévenin equivalent circuit is shown in Fig. 18.27.

2j 20 V
}

j 6

(2j 2 V)(10 V)
}}
j 8 V 2 j 2 V

Z2E
}
Z1 1 Z2

16 V
}
6 /90°

2j 216 V
}

j 6

( j 8 V)(2j 2 V)
}}

j 8 V 2 j 2 V

Z1Z2
}
Z1 1 Z2

Th

Z1

Z2 ETh

–

+

E

+

–

FIG. 18.26
Determining the open-circuit Thévenin

voltage for the network of Fig. 18.23.

–

+

ETh  =  3.33 V ∠  – 180°

ZTh

R

ZTh  =  2.67 V ∠ –90°

–

+

ETh  =  3.33 V ∠  – 180° R

XC  =  2.67 V

FIG. 18.27
The Thévenin equivalent circuit for the network of Fig. 18.23.

EXAMPLE 18.8 Find the Thévenin equivalent circuit for the network

external to branch a-a′ in Fig. 18.28.

–

+

R3

7 V

R1

6 V

E1

XL1

8 V

R2 3 V

XL2
=  5 V

10 V ∠ 0°
XC 4 V

a

–

+

E2 30 V ∠ 15°

a9 Thévenin

FIG. 18.28
Example 18.8.

Solution:
Steps 1 and 2 (Fig. 18.29): Note the reduced complexity with sub-

scripted impedances:

E1

–

+

Z1

Z2

Z3

10 V ∠ 0°

a

a9 Thévenin

FIG. 18.29
Assigning the subscripted impedances to the network of Fig. 18.28.
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Z1 5 R1 1 j XL1
5 6 V 1 j 8 V

Z2 5 R2 2 j XC 5 3 V 2 j 4 V

Z3 5 1j XL2
5 j 5 V

Step 3 (Fig. 18.30):

ZTh 5 Z3 1 5 j 5 V 1

5 j 5 1 5 j 5 1

5 j 5 1 5.08 /223.96° 5 j 5 1 4.64 2 j 2.06

ZTh 5 4.64 V 1 j 2.94 V 5 5.49 V /32.36°

50 /0°
}}
9.85 /23.96°

50 /0°
}
9 1 j 4

(10 V /53.13°)(5 V /253.13°)
}}}}
(6 V 1 j 8 V) 1 (3 V 2 j 4 V)

Z1Z2
}
Z1 1 Z2

Th

Z1

Z2

Z3
a

a9

ZTh

FIG. 18.30
Determining the Thévenin impedance for the network of Fig. 18.28.

Step 4 (Fig. 18.31): Since a-a′ is an open circuit, IZ3
5 0. Then ETh is

the voltage drop across Z2:

ETh 5 (voltage divider rule)

5

ETh 5 5 5.08 V /277.09°
50 V /253.13°
}}

9.85 /23.96°

(5 V /253.13°)(10 V /0°)
}}}

9.85 V /23.96°

Z2E
}
Z2 1 Z1

E1

–

+

Z1

Z2

Z3 a

a9

ETh

–

+
IZ3

  =  0

FIG. 18.31
Determining the open-circuit Thévenin voltage for the network of Fig. 18.28.



802  NETWORK THEOREMS (ac)

The next example demonstrates how superposition is applied to elec-

tronic circuits to permit a separation of the dc and ac analyses. The fact

that the controlling variable in this analysis is not in the portion of the net-

work connected directly to the terminals of interest permits an analysis of

the network in the same manner as applied above for independent sources.

EXAMPLE 18.9 Determine the Thévenin equivalent circuit for the

transistor network external to the resistor RL in the network of Fig.

18.33. Then determine VL.

Th

–

+

ETh

ZTh

R3

4.64 V + j2.94 V
7 V

5.08 V ∠ –77.09°
–

+

E2 30 V ∠  15°
–

+

ETh

4.64 V 7 V

5.08 V ∠ –77.09°

–

+

E2 30 V ∠  15°

2.94 V

R XLa

a′

a

a′

R3

FIG. 18.32
The Thévenin equivalent circuit for the network of Fig. 18.28.

–

+

RB 1 MV

RC 2 kV

Rs

0.5 kV

Ei

C1

10 V

12 V

C2

10 V

Transistor

RL  =  1 kV  VL

–

+

Thévenin

FIG. 18.33
Example 18.9.

Solution: Applying superposition.

dc Conditions Substituting the open-circuit equivalent for the cou-

pling capacitor C2 will isolate the dc source and the resulting currents

from the load resistor. The result is that for dc conditions, VL 5 0 V.

Although the output dc voltage is zero, the application of the dc voltage

is important to the basic operation of the transistor in a number of

important ways, one of which is to determine the parameters of the

“equivalent circuit” to appear in the ac analysis to follow.

ac Conditions For the ac analysis, an equivalent circuit is substi-

tuted for the transistor, as established by the dc conditions above, that

Step 5: The Thévenin equivalent circuit is shown in Fig. 18.32.
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will behave like the actual transistor. A great deal more will be said

about equivalent circuits and the operations performed to obtain the net-

work of Fig. 18.34, but for now let us limit our attention to the manner

in which the Thévenin equivalent circuit is obtained. Note in Fig. 18.34

that the equivalent circuit includes a resistor of 2.3 kV and a controlled

current source whose magnitude is determined by the product of a fac-

tor of 100 and the current I1 in another part of the network.

Th

RB 1 MV

Rs

0.5 kV

–

+

I1

2.3 kV RC 2 kV RL 1 kV  VLEi
100I1

Transistor equivalent
circuit

–

+

Thévenin

FIG. 18.34
The ac equivalent network for the transistor amplifier of Fig. 18.33.

Note in Fig. 18.34 the absence of the coupling capacitors for the ac

analysis. In general, coupling capacitors are designed to be open cir-

cuits for dc analysis and short circuits for ac analysis. The short-circuit

equivalent is valid because the other impedances in series with the cou-

pling capacitors are so much larger in magnitude that the effect of the

coupling capacitors can be ignored. Both RB and RC are now tied to

ground because the dc source was set to zero volts (superposition) and

replaced by a short-circuit equivalent to ground.

For the analysis to follow, the effect of the resistor RB will be

ignored since it is so much larger than the parallel 2.3-kV resistor.

ZTh When Ei is set to zero volts, the current I1 will be zero amperes,

and the controlled source 100I1 will be zero amperes also. The result is

an open-circuit equivalent for the source, as appearing in Fig. 18.35.

It is fairly obvious from Fig. 18.35 that

ZTh 5 2 kV

ETh For ETh, the current I1 of Fig. 18.34 will be

I1 5 5 5

and 100I1 5 (100)1 2 5 35.71 3 1023/V Ei

Referring to Fig. 18.36, we find that

ETh 5 2(100I1)RC

5 2(35.71 3 1023/V Ei)(2 3 103
V)

ETh 5 271.42Ei

The Thévenin equivalent circuit appears in Fig. 18.37 with the orig-

inal load RL.

Ei
}
2.8 kV

Ei
}
2.8 kV

Ei
}}
0.5 kV 1 2.3 kV

Ei
}}
Rs 1 2.3 kV

RC 2 kV ZTh

FIG. 18.35
Determining the Thévenin impedance for the 

network of Fig. 18.34.

–

+

RC 2 kV ETh

–

+

100I1

FIG. 18.36
Determining the Thévenin voltage for the net-

work of Fig. 18.34.

–

+

ETh RL

RTh

2 kV

1 kV  VL

–

+

71.42Ei

FIG. 18.37
The Thévenin equivalent circuit for the net-

work of Fig. 18.34.
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Output Voltage VL

VL 5 5

and VL 5 223.81Ei

revealing that the output voltage is 23.81 times the applied voltage with

a phase shift of 180° due to the minus sign.

Dependent Sources
For dependent sources with a controlling variable not in the network

under investigation, the procedure indicated above can be applied. How-

ever, for dependent sources of the other type, where the controlling vari-

able is part of the network to which the theorem is to be applied, another

approach must be employed. The necessity for a different approach will be

demonstrated in an example to follow. The method is not limited to depen-

dent sources of the latter type. It can also be applied to any dc or sinusoidal

ac network. However, for networks of independent sources, the method of

application employed in Chapter 9 and presented in the first portion of this

section is generally more direct, with the usual savings in time and errors.

The new approach to Thévenin’s theorem can best be introduced at

this stage in the development by considering the Thévenin equivalent

circuit of Fig. 18.38(a). As indicated in Fig. 18.38(b), the open-circuit

terminal voltage (Eoc) of the Thévenin equivalent circuit is the Thévenin

equivalent voltage; that is,

(18.1)

If the external terminals are short circuited as in Fig. 18.38(c), the

resulting short-circuit current is determined by

(18.2)

or, rearranged,

ZTh 5

and (18.3)

Equations (18.1) and (18.3) indicate that for any linear bilateral dc or

ac network with or without dependent sources of any type, if the open-

circuit terminal voltage of a portion of a network can be determined

along with the short-circuit current between the same two terminals, the

Thévenin equivalent circuit is effectively known. A few examples will

make the method quite clear. The advantage of the method, which was

stressed earlier in this section for independent sources, should now be

more obvious. The current Isc, which is necessary to find ZTh, is in gen-

eral more difficult to obtain since all of the sources are present.

There is a third approach to the Thévenin equivalent circuit that is

also useful from a practical viewpoint. The Thévenin voltage is found

as in the two previous methods. However, the Thévenin impedance is

ZTh 5 }
E

Is

o

c

c
}

ETh
}
Isc

Isc 5 }
E

Z
T

T

h

h

}

Eoc 5 ETh

2(1 kV)(71.42Ei)
}}

1 kV 1 2 kV

2RLETh
}
RL 1 ZTh

–

+

ZTh

ETh

–

+

ZTh

ETh

–

+

ZTh

ETh

Eoc  = ETh

–

+

Isc  =
ETh

ZTh

(a)

(b)

(c)

FIG. 18.38
Defining an alternative approach for

determining the Thévenin impedance.
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obtained by applying a source of voltage to the terminals of interest and

determining the source current as indicated in Fig. 18.39. For this

method, the source voltage of the original network is set to zero. The

Thévenin impedance is then determined by the following equation:

(18.4)

Note that for each technique, ETh 5 Eoc, but the Thévenin impedance is

found in different ways.

EXAMPLE 18.10 Using each of the three techniques described in this

section, determine the Thévenin equivalent circuit for the network of

Fig. 18.40.

Solution: Since for each approach the Thévenin voltage is found in

exactly the same manner, it will be determined first. From Fig. 18.40,

where IXC 5 0,

Due to the polarity for V and

defined terminal polarities

VR1
5 ETh 5 Eoc 5 2 5 2

The following three methods for determining the Thévenin imped-

ance appear in the order in which they were introduced in this section.

Method 1: See Fig. 18.41.

ZTh 5 R1 \ R2 2 j XC

Method 2: See Fig. 18.42. Converting the voltage source to a current

source (Fig. 18.43), we have (current divider rule)

Isc 5 5 

5 

}
R

2

1

m

1

R2

R

V

2

}

——
(R1 i R2) 2 j XC

2}
R1

R

1

1R2

R2

} 1}
m

R

V

1

}2
——
(R1 i R2) 2 j XC

2(R1 i R2)}
m

R

V

1

}

——
(R1 i R2) 2 j XC

mR2V
}
R1 1 R2

R2(mV)
}
R1 1 R2

ZTh 5 }
E

Ig

g
}

Th

Ig

–

+

ZTh

Network Eg

FIG. 18.39
Determining ZTh using the approach 

ZTh 5 Eg / Ig.

–

+

R1

R2

Thévenin

XC

mV

–

+

m

FIG. 18.40
Example 18.10.

R1

R2 ZTh

XC

–

+
R2

R1

mV

XC

Isc

Isc

m

R1 R2 Isc

XC

mV

R1

Isc

m

FIG. 18.41
Determining the Thévenin impedance for the 

network of Fig. 18.40.

FIG. 18.42
Determining the short-circuit current for the 

network of Fig. 18.40.

FIG. 18.43
Converting the voltage source of Fig. 18.42 to a current source.
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and

ZTh 5 5 5

(R1 i R2) 2 j XC

5 R1 i R2 2 j XC

Method 3: See Fig. 18.44.

Ig 5

and ZTh 5 5 R1 \ R2 2 j XC

In each case, the Thévenin impedance is the same. The resulting

Thévenin equivalent circuit is shown in Fig. 18.45.

Eg
}
Ig

Eg
}}
(R1 \ R2) 2 j XC

1
––––

}
(R1 i R2

1

) 2 j XC

}

}
R

2

1

m

1

R2

R

V

2

}

––––

}
R

2

1

m

1

R2

R

V

2

}

Eoc
}
Isc

R2

R1
XC Ig

+

–

Eg

ZTh

FIG. 18.44
Determining the Thévenin impedance for the 

network of Fig. 18.40 using the approach 

ZTh 5 Eg / Ig.

R1 + R2

ETh = Thévenin

–

+

mR2V

ZTh  = R1 \ R2 –  jXC

–

+

m

FIG. 18.45
The Thévenin equivalent circuit for the network of Fig. 18.40.

EXAMPLE 18.11 Repeat Example 18.10 for the network of Fig.

18.46.

Solution: From Fig. 18.46, ETh is

ETh 5 Eoc 5 2hI(R1 \ R2) 5 2

Method 1: See Fig. 18.47.

ZTh 5 R1 \ R2 2 j XC

Note the similarity between this solution and that obtained for the pre-

vious example.

Method 2: See Fig. 18.48.

Isc 5

and ZTh 5 5 5 R1 i R2 2 j XC

2hI(R1 i R2)
——

}
(R

2

1

(

i

R

R

1

2

i

)

R

2

2)

j

h

X

I

C

}

Eoc
}
Isc

2(R1 \ R2)hI
}}
(R1 \ R2) 2 j XC

hR1R2I
}
R1 1 R2

hI R1 R2

XC

Thévenin

FIG. 18.46
Example 18.11.

R1 R2

XC

ZTh  = R1 i R2 –  jXC

FIG. 18.47
Determining the Thévenin impedance for the 

network of Fig. 18.46.
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Method 3: See Fig. 18.49.

Ig 5

and ZTh 5 5 R1 \ R2 2 j XC

The following example has a dependent source that will not permit

the use of the method described at the beginning of this section for

independent sources. All three methods will be applied, however, so

that the results can be compared.

EXAMPLE 18.12 For the network of Fig. 18.50 (introduced in Exam-

ple 18.6), determine the Thévenin equivalent circuit between the indi-

cated terminals using each method described in this section. Compare

your results.

Eg
}
Ig

Eg
}}
(R1 \ R2) 2 j XC

Th

Solution: First, using Kirchhoff’s voltage law, ETh (which is the

same for each method) is written

ETh 5 V 1 mV 5 (1 1 m)V

However, V 5 IR1

so ETh 5 (1 1 m)IR1

ZTh
Method 1: See Fig. 18.51. Since I 5 0, V and mV 5 0, and

ZTh 5 R1 (incorrect)

Method 2: See Fig. 18.52. Kirchhoff’s voltage law around the indicated

loop gives us

V 1 mV 5 0

and V(1 1 m) 5 0

Since m is a positive constant, the above equation can be satisfied

only when V 5 0. Substitution of this result into Fig. 18.52 will yield

the configuration of Fig. 18.53, and

Isc 5 I

hI R1 R2

XC

Isc

Isc

FIG. 18.48
Determining the short-circuit current for the 

network of Fig. 18.46.

R1 R2

XC

Eg

Ig

–

+

ZTh

FIG. 18.49
Determining the Thévenin impedance using 

the approach ZTh 5 Eg / Ig.

I R1

mV

Thévenin

V

+

–

+–
m

FIG. 18.50
Example 18.12.

R1

mV  =  0

V  =  0

+

–

+–

ZTh

m

FIG. 18.51
Determining ZTh incorrectly.

FIG. 18.52
Determining Isc for the network of Fig. 18.50.

I R1

mV

V

+

–

+–

Isc

Isc

m
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with

ZTh 5 5 5 (1 1 m)R1 (correct)

Method 3: See Fig. 18.54.

Eg 5 V 1 mV 5 (1 1 m)V

or V 5

and Ig 5 5

and ZTh 5 5 (1 1 m)R1 (correct)

The Thévenin equivalent circuit appears in Fig. 18.55, and

IL 5

which compares with the result of Example 18.6.

The network of Fig. 18.56 is the basic configuration of the transistor

equivalent circuit applied most frequently today (although most texts in

electronics will use the circle rather than the diamond outline for the

source). Obviously, it is necessary to know its characteristics and to be

adept in its use. Note that there are both a controlled voltage and a con-

trolled current source, each controlled by variables in the configuration.

(1 1 m)R1I
}}
RL 1 (1 1 m)R1

Eg
}
Ig

Eg

}
(1 1 m)R1

V
}
R1

Eg

}
1 1 m

(1 1 m)IR1
}}

I

Eoc
}
Isc

Th

–

+

R1 V Eg

Ig
mV

+–

ZTh

m

FIG. 18.54
Determining ZTh using the approach ZTh 5

Eg / Ig.

–

+

(1 + m)R1

RL

IL

ETh  =  (1  + m)IR1

FIG. 18.55
The Thévenin equivalent circuit for the

network of Fig. 18.50.

–

+

R2k2Ik1V2Vi

I

R1

Thévenin

–

+

V2

–

+

FIG. 18.56
Example 18.13: Transistor equivalent network.

EXAMPLE 18.13 Determine the Thévenin equivalent circuit for the

indicated terminals of the network of Fig. 18.56.

Solution: Apply the second method introduced in this section.

ETh
Eoc 5 V2

I 5 5

and Eoc 5 2k2IR2 5 2k2R21 2
5 1

k1k2R2Eoc
}}

R1

2k2R2Vi
}

R1

Vi 2 k1Eoc
}}

R1

Vi 2 k1Eoc
}}

R1

Vi 2 k1V2
}}

R1

I R1 V  =  0

+

–
Isc

I1  =  0 Isc

FIG. 18.53
Substituting V 5 0 into the network of Fig. 

18.52.
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or Eoc11 2 2 5

and Eoc1 2 5

so (18.5)

Isc For the network of Fig. 18.57, where

V2 5 0 k1V2 5 0 I 5

and Isc 5 2k2I 5 

so ZTh 5 5 5

and (18.6)
ZTh 5 

R2

1 2 }
k1k

R

2

1

R2
}

R1R2
——
R12k1k2R2

}
R

2

12

k2

k

R

1k

2V

2R

i

2

}

–––

}
2

R

k2

1

Vi
}

Eoc
}
Isc

2k2Vi
}

R1

Vi
}
R1

Eoc 5 }
R1

2

2

k2

k

R

1

2

k

V

2R

i

2

} 5 ETh

2k2R2Vi
}

R1

R1 2 k1k2R2
}}

R1

2k2R2Vi
}

R1

k1k2R2
}

R1

Th

Isc

–

+

R2k2IVi

I

R1

Isc

FIG. 18.57
Determining Isc for the network of Fig. 18.56.

Frequently, the approximation k1 > 0 is applied. Then the Thévenin

voltage and impedance are

k1 5 0 (18.7)

k1 5 0 (18.8)

Apply ZTh 5 Eg/Ig to the network of Fig. 18.58, where

I 5

But V2 5 Eg

so I 5
2k1Eg
}

R1

2k1V2
}

R1

ZTh 5 R2

ETh 5 }
2k

R

2R

1

2Vi
}
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ZTh

–

+

Eg

Ig

R2k2Ik1V2

I

R1

–

+

FIG. 18.58
Determining ZTh using the procedure ZTh 5 Eg / Ig.

Applying Kirchhoff’s current law, we have

Ig 5 k2I 1 5 k212 2 1

5 Eg1 2 2
and 5

or ZTh 5 5

as obtained above.

The last two methods presented in this section were applied only to

networks in which the magnitudes of the controlled sources were

dependent on a variable within the network for which the Thévenin

equivalent circuit was to be obtained. Understand that both of these

methods can also be applied to any dc or sinusoidal ac network con-

taining only independent sources or dependent sources of the other

kind.

18.4 NORTON’S THEOREM
The three methods described for Thévenin’s theorem will each be

altered to permit their use with Norton’s theorem. Since the Thévenin

and Norton impedances are the same for a particular network, certain

portions of the discussion will be quite similar to those encountered in

the previous section. We will first consider independent sources and the

approach developed in Chapter 9, followed by dependent sources and

the new techniques developed for Thévenin’s theorem.

You will recall from Chapter 9 that Norton’s theorem allows us to

replace any two-terminal linear bilateral ac network with an equiva-

lent circuit consisting of a current source and an impedance, as in

Fig. 18.59.

The Norton equivalent circuit, like the Thévenin equivalent circuit, is

applicable at only one frequency since the reactances are frequency

dependent.

R1R2
}}
R1 2 k1k2R2

Eg
}
Ig

R1 2 k1k2R2
}}

R1R2

Ig
}
Eg

k1k2
}
R1

1
}
R2

Eg
}
R2

k1Eg
}

R1

Eg
}
R2

ZNIN

FIG. 18.59
The Norton equivalent circuit for ac networks.
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Independent Sources
The procedure outlined below to find the Norton equivalent of a sinu-

soidal ac network is changed (from that in Chapter 9) in only one

respect: the replacement of the term resistance with the term imped-

ance.

1. Remove that portion of the network across which the Norton

equivalent circuit is to be found.

2. Mark (C, ●, and so on) the terminals of the remaining two-terminal

network.

3. Calculate ZN by first setting all voltage and current sources to

zero (short circuit and open circuit, respectively) and then

finding the resulting impedance between the two marked

terminals.

4. Calculate IN by first replacing the voltage and current sources and

then finding the short-circuit current between the marked

terminals.

5. Draw the Norton equivalent circuit with the portion of the circuit

previously removed replaced between the terminals of the Norton

equivalent circuit.

The Norton and Thévenin equivalent circuits can be found from each

other by using the source transformation shown in Fig. 18.60. The

source transformation is applicable for any Thévenin or Norton equiva-

lent circuit determined from a network with any combination of inde-

pendent or dependent sources.

–

+

ZTh

ETh = INZN
ZNIN =

ETh

ZTh

ZN  = ZTh

ZTh = ZN

FIG. 18.60
Conversion between the Thévenin and Norton equivalent circuits.

EXAMPLE 18.14 Determine the Norton equivalent circuit for the net-

work external to the 6-V resistor of Fig. 18.61.

–

+

RL 6 V

R1

3 V

E  =  20 V ∠ 0°

XL

4 V

XC 5 V

Norton

FIG. 18.61
Example 18.14.
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Solution:
Steps 1 and 2 (Fig. 18.62):

Z1 5 R1 1 j XL 5 3 V 1 j 4 V 5 5 V /53.13°

Z2 5 2j XC 5 2j 5 V

Step 3 (Fig. 18.63):

ZN 5 5 5

5 5 7.91 V /218.44° 5 7.50 V 2 j 2.50 V

Step 4 (Fig. 18.64):

IN 5 I1 5 5 5 4 A /253.13°
20 V /0°

}}
5 V /53.13°

E
}
Z1

25 V /236.87°
}}
3.16 /218.43°

25 V /236.87°
}}

3 2 j 1

(5 V /53.13°)(5 V /290°)
}}}

3 V 1 j 4 V 2 j 5 V

Z1Z2
}
Z1 1 Z2

Th

E

–

+

Z1

Z2

Norton

FIG. 18.62
Assigning the subscripted impedances to the 

network of Fig. 18.61.

Z1

Z2 ZN

FIG. 18.63
Determining the Norton impedance for the

network of Fig. 18.61.

E

–

+

Z1

Z2

I1

IN

IN

FIG. 18.64
Determining IN for the network of Fig. 18.61.

R 6 VZNIN =  4 A ∠ –  53.13° RL 6 VIN =  4 A ∠ –  53.13°

R 7.50 V

XC 2.50 V

7.50 V – j2.50 V

Step 5: The Norton equivalent circuit is shown in Fig. 18.65.

FIG. 18.65
The Norton equivalent circuit for the network of Fig. 18.61.

EXAMPLE 18.15 Find the Norton equivalent circuit for the network

external to the 7-V capacitive reactance in Fig. 18.66.

R2

1 V

R1 2 V

XC1
4 V

I =  3 A ∠ 0°
XC2

 =  7 V

XL

5 V

FIG. 18.66
Example 18.15.



NORTON’S THEOREM  813

Solution:
Steps 1 and 2 (Fig. 18.67):

Z1 5 R1 2 j XC1
5 2 V 2 j 4 V

Z2 5 R2 5 1 V

Z3 5 1j XL 5 j 5 V

Th

I =  3 A ∠ 0° Z1

Z2

Z3

FIG. 18.67
Assigning the subscripted impedances to the network of Fig. 18.66.

Step 3 (Fig. 18.68):

ZN 5

Z1 1 Z2 5 2 V 2 j 4 V 1 1 V 5 3 V 2 j 4 V 5 5 V /253.13°

ZN 5 5

5

ZN 5 7.91 V /18.44° 5 7.50 V 1 j 2.50 V

25 V /36.87°
}}
3.16 /118.43°

25 V /36.87°
}}

3 1 j 1

(5 V /90°)(5 V /253.13°)
}}}

j 5 V 1 3 V 2 j 4 V

Z3(Z1 1 Z2)
}}
Z3 1 (Z1 1 Z2)

Z1

Z2

Z3

ZN

Z1

Z2

Z3 ZN

FIG. 18.68
Finding the Norton impedance for the network of Fig. 18.66.

Calculator Performing the above on the TI-86 calculator, we obtain

the following:

((0,5)*((2,24)1(1,0)))/((0,5)1((2,24)1(1,0)))
(7.500E0,2.500E0)

Ans c Pol
(7.906E0/18.435E0)

CALC. 18.2
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Step 4 (Fig. 18.69):

IN 5 I1 5 (current divider rule)

5 5 5

IN 5 2.68 A /210.3°

13.4 A /263.43°
}}

5 /253.13°

6 A 2 j 12 A
}}
5 /253.13°

(2 V 2 j 4 V)(3 A)
}}

3 V 2 j 4 V

Z1I
}
Z1 1 Z2

Th

I =  3 A ∠ 0°
Z1

Z2

Z3

I1

IN

FIG. 18.69
Determining IN for the network of Fig. 18.66.

Step 5: The Norton equivalent circuit is shown in Fig. 18.70.

XC2
7 V

7.50 V + j2.50 V

ZNIN =  2.68 A ∠ – 10.3° IN =  2.68 A ∠ – 10.3°

R 7.50 V

XL 2.50 V

XC2
7 V

FIG. 18.70
The Norton equivalent circuit for the network of Fig. 18.66.

EXAMPLE 18.16 Find the Thévenin equivalent circuit for the net-

work external to the 7-V capacitive reactance in Fig. 18.66.

Solution: Using the conversion between sources (Fig. 18.71), we

obtain

ZTh 5 ZN 5 7.50 V 1 j 2.50 V

ETh 5 INZN 5 (2.68 A /210.3°)(7.91 V /18.44°)

5 21.2 V /8.14°

The Thévenin equivalent circuit is shown in Fig. 18.72.

Dependent Sources
As stated for Thévenin’s theorem, dependent sources in which the con-

trolling variable is not determined by the network for which the Norton

equivalent circuit is to be found do not alter the procedure outlined

above.

For dependent sources of the other kind, one of the following proce-

dures must be applied. Both of these procedures can also be applied to

networks with any combination of independent sources and dependent

sources not controlled by the network under investigation.

FIG. 18.71
Determining the Thévenin equivalent circuit 

for the Norton equivalent of Fig. 18.70.

ZTh  = ZN

INZNETh

+

–

ZTh

FIG. 18.72
The Thévenin equivalent circuit for the net-

work of Fig. 18.66.

21.2 V ∠ 8.14°

R

7.50 V

ETh

+

–

XL

2.50 V

XC2
7 V
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The Norton equivalent circuit appears in Fig. 18.73(a). In Fig.

18.73(b), we find that

Th

IN

(a)

ZN IN

(b)

ZN

I  =  0

Isc IN

(c)

ZN

+

–

Eoc  = INZN

FIG. 18.73
Defining an alternative approach for determining ZN.

(18.9)

and in Fig. 18.73(c) that

Eoc 5 INZN

Or, rearranging, we have

ZN 5

and (18.10)

The Norton impedance can also be determined by applying a source

of voltage Eg to the terminals of interest and finding the resulting Ig, as

shown in Fig. 18.74. All independent sources and dependent sources not

controlled by a variable in the network of interest are set to zero, and

(18.11)

For this latter approach, the Norton current is still determined by the

short-circuit current.

EXAMPLE 18.17 Using each method described for dependent sources,

find the Norton equivalent circuit for the network of Fig. 18.75.

Solution:
IN For each method, IN is determined in the same manner. From Fig.

18.76, using Kirchhoff’s current law, we have

0 5 I 1 hI 1 Isc

or Isc 5 2(1 1 h)I

Applying Kirchhoff’s voltage law gives us

ZN 5 }
E

Ig

g
}

ZN 5 }
E

Is

o

c

c
}

Eoc
}
IN

Isc 5 IN

+

Network
ZN

Ig

Eg

–

FIG. 18.74
Determining the Norton impedance using the

approach ZN 5 Eg / Ig.

R2

+

hIE

–

Norton

R1

I

FIG. 18.75
Example 18.17.

R2

+

hIE

–

Isc

R1

I + –VR2

Isc

FIG. 18.76
Determining Isc for the network of Fig. 18.75.
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E 1 IR1 2 IscR2 5 0

and IR1 5 IscR2 2 E

or I 5

so Isc 5 2(1 1 h)I 5 2(1 1 h)1 2
or R1Isc 5 2(1 1 h)IscR2 1 (1 1 h)E

Isc[R1 1 (1 1 h)R2] 5 (1 1 h)E

Isc 5 5 IN

ZN
Method 1: Eoc is determined from the network of Fig. 18.77. By

Kirchhoff’s current law,

0 5 I 1 hI or I(h 1 1) 5 0

For h, a positive constant I must equal zero to satisfy the above.

Therefore,

I 5 0 and hI 5 0

and Eoc 5 E

with ZN 5 5 5

Method 2: Note Fig. 18.78. By Kirchhoff’s current law,

Ig 5 I 1 hI 5 (1 1 h)I

R1 1 (1 1 h)R2
––––

(1 1 h)

E
––––

}
R1 1

(1

(

1

1 1

h)E

h)R2

}

Eoc
}
Isc

(1 1 h)E
}}
R1 1 (1 1 h)R2

Isc R2 2 E
}}

R1

Isc R2 2 E
}}

R1

Th

+

hIE

–
Eoc

R1

I
+
V =  0

–

+

–

FIG. 18.77
Determining Eoc for the network of Fig. 18.75.

+

hI Eg

–

R1

I
+–

ZN

Ig

R2

+– VR1
VR2

FIG. 18.78
Determining the Norton impedance using the approach ZN 5 Eg / Eg.

By Kirchhoff’s voltage law,

Eg 2 IgR2 2 IR1 5 0

or I 5

Substituting, we have

Ig 5 (1 1 h)I 5 (1 1 h)1 2
and IgR1 5 (1 1 h)Eg 2 (1 1 h)IgR2

Eg 2 IgR2
}}

R1

Eg 2 IgR2
}}

R1
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so Eg(1 1 h) 5 Ig[R1 1 (1 1 h)R2]

or ZN 5 5

which agrees with the above.

EXAMPLE 18.18 Find the Norton equivalent circuit for the network

configuration of Fig. 18.56.

Solution: By source conversion,

IN 5 5

and (18.12)

which is Isc as determined in Example 18.13, and

ZN 5 ZTh 5 (18.13)

For k1 > 0, we have

k1 5 0 (18.14)

k1 5 0 (18.15)

18.5 MAXIMUM POWER TRANSFER THEOREM
When applied to ac circuits, the maximum power transfer theorem

states that

maximum power will be delivered to a load when the load impedance

is the conjugate of the Thévenin impedance across its terminals.

That is, for Fig. 18.79, for maximum power transfer to the load,

(18.16)

or, in rectangular form,

(18.17)

The conditions just mentioned will make the total impedance of the cir-

cuit appear purely resistive, as indicated in Fig. 18.80:

RL 5 RTh and 6j Xload 5 7j XTh

ZL 5 ZTh and vL 5 2vThZ

ZN 5 R2

IN 5 }
2

R

k2

1

Vi
}

R2
——

1 2 }
k1k

R
2

1

R2
}

IN 5 }
2

R

k2

1

Vi
}

—
R1

2

2

k2

k

R

1

2

k

V

2R

i

2

—

——

—
R1 2

R1

k

R

1

2

k2R2

—

ETh
}
ZTh

R1 1 (1 1 h)R2
}}

1 1 h

Eg
}
Ig

Th
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ZT 5 (R 6 j X) 1 (R 7 j X)

and (18.18)

Since the circuit is purely resistive, the power factor of the circuit

under maximum power conditions is 1; that is,

(maximum power transfer) (18.19)

The magnitude of the current I of Fig. 18.80 is

I 5 5

The maximum power to the load is

Pmax 5 I2R 5 1 2
2

R

and (18.20)

EXAMPLE 18.19 Find the load impedance in Fig. 18.81 for maxi-

mum power to the load, and find the maximum power.

Solution: Determine ZTh [Fig. 18.82(a)]:

Z1 5 R 2 j XC 5 6 V 2 j 8 V 5 10 V /253.13°

Z2 5 1j XL 5 j 8 V

Pmax 5 }
E

4R

2
Th
}

ETh
}
2R

ETh
}
2R

ETh
}
ZT

Fp 5 1

ZT 5 2R

Th

ETh  = ETh ∠ vThs

ZTh

ZL

ZTh ∠ vThz

 = ZL ∠ vL

FIG. 18.79
Defining the conditions for maximum power transfer to a load.

ZTh  =  R ±  jX

ZL
ETh = ETh ∠ vThs

+

– ZT

=  R

±

jX

I

FIG. 18.80
Conditions for maximum power transfer to ZL.
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ZTh 5 5 5

5 13.33 V /36.87° 5 10.66 V 1 j 8 V

and ZL 5 13.3 V /236.87° 5 10.66 V 2 j 8 V

To find the maximum power, we must first find ETh [Fig. 18.82(b)],

as follows:

ETh 5 (voltage divider rule)

5 5 5 12 V /90°

Then Pmax 5 5 5 5 3.38 W

EXAMPLE 18.20 Find the load impedance in Fig. 18.83 for

maximum power to the load, and find the maximum power.

Solution: First we must find ZTh (Fig. 18.84).

Z1 5 1j XL 5 j 9 V Z2 5 R 5 8 V

Converting from a D to a Y (Fig. 18.85), we have

Z′1 5 5 j 3 V Z2 5 8 V
Z1
}
3

144
}
42.64

(12 V)2
}}
4(10.66 V)

E2
Th

}
4R

72 V /90°
}}
6 /0°

(8 V /90°)(9 V /0°)
}}}
j 8 V 1 6 V 2 j 8 V

Z2E
}
Z2 1 Z1

80 V /36.87°
}}

6 /0°

(10 V /253.13°)(8 V /90°)
}}}}

6 V 2 j 8 V 1 j 8 V

Z1Z2
}
Z1 1 Z2

Th

E  =  9 V ∠ 0°

R

6 V
+

–

XC

8 V

XL 8 V ZL

FIG. 18.81
Example 18.19.

(a)

Z2

Z1

ZTh

(b)

E

+

Z2

+

–

ETh

Z1

–

FIG. 18.82
Determining (a) ZTh and (b) ETh for the network external to the load in 

Fig. 18.81.

R

8 V
ZL

E =
10 V∠ 0°

+

–

XL

9 V

XL

9 V
9 V

XL

FIG. 18.83
Example 18.20.
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The redrawn circuit (Fig. 18.86) shows

ZTh 5 Z′1 1

5 j 3 V 1

5 j 3 1

5 j 3 1 5 j 3 1 2.56 /73.69°

5 j 3 1 0.72 1 j 2.46

ZTh 5 0.72 V 1 j 5.46 V

and ZL 5 0.72 V 2 j 5.46 V

For ETh, use the modified circuit of Fig. 18.87 with the voltage

source replaced in its original position. Since I1 5 0, ETh is the voltage

across the series impedance of Z′1 and Z2. Using the voltage divider

rule gives us

ETh 5 5

5

ETh 5 8.54 V /216.31°

(8.54 /20.56°)(10 V /0°)
}}}

10 /36.87°

( j 3 V 1 8 V)(10 V /0°)
}}}

8 V 1 j 6 V

(Z′1 1 Z2)E
}}
Z′1 1 Z2 1 Z′1

25.62 /110.56°
}}
10 /36.87°

(3 /90°)(8.54 /20.56°)
}}}

10 /36.87°

3 V /90°( j 3 V 1 8 V)
}}}

j 6 V 1 8 V

Z′1(Z′1 1 Z2)
}}
Z′1 1 (Z′1 1 Z2 )

ZTh

Z1

Z2

Z1

Z11

2

3

FIG. 18.84
Defining the subscripted impedances for the network of Fig. 18.83.

ZTh

Z2

1

2

3

Z91

Z91 Z91

FIG. 18.85
Substituting the Y equivalent for the upper D configuration of Fig. 18.84.

ZTh

Z91Z91

Z2

Z91

FIG. 18.86
Determining ZTh for the network of Fig. 18.83.

ETh

Z91Z91

Z2

Z91
+

–

I1  =  0

E

+

–

FIG. 18.87
Finding the Thévenin voltage for the network

of Fig. 18.83.
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and Pmax 5 5 5 W

5 25.32 W

If the load resistance is adjustable but the magnitude of the load

reactance cannot be set equal to the magnitude of the Thévenin reac-

tance, then the maximum power that can be delivered to the load

will occur when the load reactance is made as close to the Thévenin

reactance as possible and the load resistance is set to the following

value:

(18.21)

where each reactance carries a positive sign if inductive and a negative

sign if capacitive.

The power delivered will be determined by

(18.22)

where (18.23)

The derivation of the above equations is given in Appendix G of the

text. The following example demonstrates the use of the above.

EXAMPLE 18.21 For the network of Fig. 18.88:

Rav 5 }
RTh

2

1 RL
}

P 5 E2
Th/4Rav

RL 5 ÏRw2
Thw 1w (wXwThw 1w Xwlowadw)2w

72.93
}
2.88

(8.54 V)2

}}
4(0.72 V)

E2
Th

}
4R

Th

+

–

RTh

ETh  =  20 V ∠0°

XTh

RL

4 V 7 V

XC  =  4 V

FIG. 18.88
Example 18.21.

a. Determine the value of RL for maximum power to the load if the

load reactance is fixed at 4 V.

b. Find the power delivered to the load under the conditions of part (a).

c. Find the maximum power to the load if the load reactance is made

adjustable to any value, and compare the result to part (b) above.

Solutions:
a. Eq. (18.21): RL 5 ÏRw2

Thw 1w (wXwThw 1w Xwlowadw)2w
5 Ï(4w Vw)2w 1w (w7w Vw 2w 4w Vw)2w



Th822  NETWORK THEOREMS (ac)

5 Ï1w6w 1w 9w 5 Ï2w5w
RL 5 5 V

b. Eq. (18.23): Rav 5 5

5 4.5 V

Eq. (18.22): P 5

5 5 W

> 22.22 W

c. For ZL 5 4 V 2 j 7 V,

Pmax 5 5

5 25 W

exceeding the result of part (b) by 2.78 W.

18.6 SUBSTITUTION, RECIPROCITY,AND MILLMAN’S THEOREMS
As indicated in the introduction to this chapter, the substitution and

reciprocity theorems and Millman’s theorem will not be considered

here in detail. A careful review of Chapter 9 will enable you to apply

these theorems to sinusoidal ac networks with little difficulty. A number

of problems in the use of these theorems appear in the problems section

at the end of the chapter.

18.7 APPLICATIONS
Soldering Gun
Soldering and welding are two operations that are best performed by

the application of heat that is unaffected by the thermal characteristics

of the materials involved. In other words, the heat applied should not be

sensitive to the changing parameters of the welding materials, the met-

als involved, or the welding conditions. The arc (a heavy current) estab-

lished in the welding process should remain fixed in magnitude to

ensure an even weld. This is best accomplished by ensuring a fixed cur-

rent through the system even though the load characteristics may

change—that is, by ensuring a constant current supply of sufficient

amperage to establish the required arc for the welding equipment or even

heating of the soldering iron tip. A further requirement for the soldering

process is that the heat developed be sufficient to raise the solder to its

melting point of about 800°F.

The soldering gun of Fig. 18.89(a) employs a unique approach to

establishing a fixed current through the soldering tip. The soldering tip

is actually part of a secondary winding of a transformer (Chapter 21)

having only one turn as its secondary as shown in Fig. 18.89(b).

Because of the heavy currents that will be established in this single-turn

secondary, it is quite large in size to ensure that it can handle the cur-

rent and to minimize its resistance level. The primary of the transformer

(20 V)2

}
4(4 V)

E2
Th

}
4RTh

400
}
18

(20 V)2

}
4(4.5 V)

E2
Th

}
4Rav

4 V 1 5 V
}}

2

RTh 1 RL
}

2
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has many turns of thinner wire to establish the turns ratio necessary to

establish the required current in the secondary. The Universal® unit of

Fig. 18.89 is rated 140 W/100 W, indicating that it has two levels of

power controlled by the trigger. As you pull the trigger, the first setting

will be at 140 W, and a fully depressed trigger will provide 100 W of

power. The inductance of the primary is 285 mH at the 140-W setting

and 380 mH at the 100-W setting, indicating that the switch controls

how many windings of the primary will be part of the transformer

action for each wattage rating, as shown in Fig. 18.89(c). Since induc-

tance is a direct function of the number of turns, the 140-W setting has

fewer turns than the 100-W setting. The dc resistance of the primary

was found to be about 11.2 V for the 140-W setting and 12.8 V for the

100-W setting, which makes sense also since more turns will require a

longer wire and the resistance should increase accordingly.

Under rated operating conditions, the primary current for each set-

ting can be determined using Ohm’s law in the following manner:

Th

 !"

 !"

#$$%&'(

)* $+,'-

./0 1

.00 1

2-&3)-4

5+-'

6'*+7()-4

(c)

Primary

Is
Secondary

140 W 100 W

Ip

120 V ac

OFF

FIG. 18.89
Soldering gun: (a) appearance; (b) internal construction; 

(c) turns ratio control.
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For 140 W,

Ip 5 }
V

P

p

} 5 }
1

1

4

2

0

0

W

V
} 5 1.17 A

For 100 W,

Ip 5 }
V

P

p

} 5 }
1

1

0

2

0

0

W

V
} 5 0.83 A

As expected, the current demand is more for the 140-W setting than

for the 100-W setting. Using the measured values of input inductance

and resistance for the 140-W setting, the equivalent circuit of Fig.

18.90(a) will result. Using the applied 60 Hz to determine the reactance

of the coil and then determining the total impedance seen by the pri-

mary will result in the following for the source current:

XL 5 2pf L 5 2p(60 Hz)(285 mH) 5 107.44 V

and ZT 5 R 1 j XL 5 11.2 V 1 j 107.44 V 5 108.02 V /84.05°

so that |Ip| 5 *}
Z

E

T

}* 5 }
10

1

8

2

.

0

02

V

V
} 5 1.11 A

which is a close match with the rated level.

For the 100-W level of Fig. 18.90(b), the following analysis would

result:

XL 5 2pf L 5 2p(60 Hz)(380 mH) 5 143.26 V

and ZT 5 R 1 j XL 5 12.8 V 1 j 143.26 V 5 143.83 V /84.89°

so that |Ip| 5 *}
Z

E

T

}* 5 }
14

1

3

2

.

0

83

V

V
} 5 0.83 A

which is a match to hundredths place with the value calculated from

rated conditions.

Removing the tip and measuring the primary and secondary voltages

resulted in 120 V/0.38 V for the 140-W setting and 120 V/0.31 V for the

100-W setting, respectively. Since the voltages of a transformer are

directly related to the turns ratio, the number of turns in the primary

(Np) to that of the secondary (Ns) can be estimated by the following for

each setting:

For 140 W,

}
N

N

p

s

} 5 }
0

1

.

2

3

0

8

V

V
} > 316

For 100 W,

}
N

N

p

s

} 5 }
0

1

.

2

3

0

1

V

V
} > 387

Looking at the photograph of Fig. 18.89(b), it would certainly appear

that there are 300 or more turns in the primary winding.

The currents of a transformer are related by the turns ratio in the fol-

lowing manner, permitting a calculation of the secondary currents for

each setting:

For 140 W,

Is 5 }
N

N

p

s

}Ip 5 316(1.17 A) > 370 A

Rp 12.8 V

Lp 380 mH

+

120 V
60 Hz

–

Ip

100 W

(b)

Rp 11.2 V

Lp 285 mH

+

120 V
60 Hz

–

Ip

140 W

(a)

FIG. 18.90
Equivalent circuits for the soldering iron of

Fig. 18.89(a): (a) at 140-W setting; (b) at

100-W setting.
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For 100 W,

Is 5 }
N

N

p

s

}Ip 5 387(0.83 A) > 321 A

Quite clearly, the secondary current is much higher for the 140-W set-

ting. The resulting current levels are probably higher than you might

have expected, but keep in mind that the above analysis does not

include the effect of the reflected impedance from the secondary to the

primary that will reduce the primary current level (to be discussed in

Chapter 21). In addition, as the soldering tip heats up, its resistance

increases, further reducing the resulting current levels. Using an 

Amp-Clamp®, the current in the secondary was found to exceed 300 A

when the power was first applied and the soldering tip was cold. How-

ever, as the tip heated up because of the high current levels, the current

through the primary dropped to about 215 A for the 140-W setting and

to 180 A for the 100-W setting. These high currents are part of the rea-

son that the lifetime of most soldering tips on soldering guns is about

20 hours. Eventually, the tip will simply begin to melt. Using these

levels of current and the given power rating, the resistance of the sec-

ondary can be approximated as follows:

For 140 W,

R 5 }
I

P
2} 5 }

(2

1

1

4

5

0

A

W

)2} > 3 mV

For 100 W,

R 5 }
I

P
2} 5 }

(1

1

8

0

0

0

A

W

)2} > 3 mV

which is as low as expected when you consider the cross-sectional

area of the secondary and the fact that the tip is a short section of

low-resistance, tin-plated copper.

One of the obvious advantages of the soldering gun versus the iron

is that the iron is off when you release the trigger, thus reducing energy

costs and extending the life of the tip. Applying dc current rather than

ac to develop a constant current would be impractical because the high

current demand would require a series of large batteries in parallel.

The above investigation was particularly interesting because of the

manner in which the constant current characteristic was established, the

levels of current established, and the excellent manner in which some of

the theory introduced in the text was verified.

Electronic Systems
One of the blessings in the analysis of electronic systems is that the

superposition theorem can be applied so that the dc analysis and ac

analysis can be performed separately. The analysis of the dc system will

affect the ac response, but the analysis of each is a distinct, separate

process. Even though electronic systems have not been investigated in

this text, a number of important points can be made in the description

to follow that support some of the theory presented in this and recent

chapters, so inclusion of this description is totally valid at this point.

Consider the network of Fig. 18.91 with a transistor power amplifier, an

8-V speaker as the load, and a source with an internal resistance of 800 V.

Note that each component of the design was isolated by a color box

Th
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to emphasize the fact that each component must be carefully weighed

in any good design.

As mentioned above, the analysis can be separated into a dc and an

ac component. For the dc analysis the two capacitors can be replaced by

an open-circuit equivalent (Chapter 10), resulting in an isolation of the

amplifier network as shown in Fig. 18.92. Given the fact that VBE will

be about 0.7 V dc for any operating transistor, the base current IB can

be found as follows using Kirchhoff’s voltage law:

IB 5 }
V

R

R

B

B
} 5 }

VCC

R

2

B

VBE
} 5 }

22 V

47

2

kV

0.7 V
} 5 453.2 mA

For transistors, the collector current IC is related to the base current

by IC 5 bIB, and

IC 5 bIB 5 (200)(453.2 mA) 5 90.64 mA

Finally, through Kirchhoff’s voltage law, the collector voltage (also

the collector-to-emitter voltage since the emitter is grounded) can be

determined as follows:

VC 5 VCE 5 VCC 2 ICRC 5 22 V 2 (90.64 mA)(100 V) 5 12.94 V

For the dc analysis, therefore,

IB 5 453.2 mA IC 5 90.64 mA VCE 5 12.94 V

which will define a point of dc operation for the transistor. This is an

important aspect of electronic design since the dc operating point will

have an effect on the ac gain of the network.

Now, using superposition, we can analyze the network from an ac

viewpoint by setting all dc sources to zero (replaced by ground connec-

tions) and replacing both capacitors by short circuits as shown in Fig.

18.93. Substituting the short-circuit equivalent for the capacitors is

valid because at 10 kHz (the midrange for human hearing response), the

reactance of the capacitor is determined by XC 5 1/2pfC 5 15.92 V

which can be ignored when compared to the series resistors at the

source and load. In other words, the capacitor has played the important

role of isolating the amplifier for the dc response and completing the

network for the ac response.

Th

Rs

RB 47 kV

RC 100 V

+

–

Vs 1V(p-p)

Source

CC

0.1 µF

Amplifier Load

0.1 µF

VCC = 22 V

β = 200

E

B

C

CC

RL 8 V

FIG. 18.91
Transistor amplifier.

22 V

RB 47 kV
RC 100 V

VCC

B

E

IB

+

–
VBE

VCE

VCC 22 V

C

β = 200

–

+

IC

FIG. 18.92
dc equivalent of the transistor network of 

Fig. 18.91.

FIG. 18.93
ac equivalent of the transistor network of 

Fig. 18.91.

Rs

800 V

RB 47 kV

RC 100 V

B

E

C

RL 8 V

β = 200

Vs 1V(p-p)
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Redrawing the network as shown in Fig. 18.94(a) will permit an ac

investigation of its reponse. The transistor has now been replaced by an

equivalent network that will represent the behavior of the device. This

process will be covered in detail in your basic electronics courses. This

transistor configuration has an input impedance of 200 V and a current

source whose magnitude is sensitive to the base current in the input cir-

cuit and to the amplifying factor for this transistor of 200. The 47-kV

resistor in parallel with the 200-V input impedance of the transistor can

be ignored, so the input current Ii and base current Ib are determined by

Ii > Ib 5 }
Rs

V

1

s

Ri

} 5 5 }
1 V

1 k

(

V

p-p)
} 5 1 mA (p-p)

The collector current IC is then

IC 5 bIb 5 (200)(1 mA ( p-p)) 5 200 mA ( p-p)

and the current to the speaker is determined by the current divider rule

as follows:

IL 5 5 0.926IC 5 0.926(200 mA (p-p))

5 185.2 mA (p-p)

with the voltage across the speaker being

VL 5 2ILRL 5 2(185.2 mA ( p-p))(8 V) 5 21.48 V

The power to the speaker is then determined as follows:

Pspeaker 5 VLrms
? ILrms

5 }
(VL( p-p)

8

)(IL( p-p))
} 5

5 34.26 mW

which is relatively low. It would initially appear that the above was a

good design for distribution of power to the speaker because a majority

(1.48 V)(185.2 mA (p-p))
}}}

8

100 V(IC)
}}
100 V 1 8 V

1 V (p-p)
}}
800 V 1 200 V

(a)

RC 100 V

Rs

800 V

Ii

Vs 1V(p-p)

+

–

RL 8 VRi 200 VRB

B

E
47 kΩ

I ≅ 0 A Ib βIb
200Ib

C

IC

+

–
IL

VL

Transistor equivalent circuit

(b)

100 V

8 V

100 V

Impedance
matching
transformer

+

– 200 mA

100 V

100 V
100 mA

100 mA

VL

FIG. 18.94
(a) Network of Fig. 18.93 following the substitution of the transistor equivalent

network; (b) effect of the matching transformer.
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of the collector current went to the speaker. However, one must always

keep in mind that power is the product of voltage and current. A high

current with a very low voltage will result in a lower power level. In this

case, the voltage level is too low. However, if we introduce a matching

transformer that makes the 8-V resistive load “look like” 100 V as

shown in Fig. 18.94(b), establishing maximum power conditions, the

current to the load will drop to half of the previous amount because cur-

rent splits through equal resistors. But the voltage across the load will

increase to

VL 5 ILRL 5 (100 mA ( p-p))(100 V) 5 10 V ( p-p)

and the power level to

Pspeaker 5}
(VL( p-p)

8

)(IL( p-p))
}5}

(10 V)(1

8

00 mA)
}5 125 mW

which is 3.6 times the gain without the matching transformer.

For the 100-V load, the dc conditions are unaffected due to the iso-

lation of the capacitor CC, and the voltage at the collector is 12.94 V as

shown in Fig. 18.95(a). For the ac response with a 100-V load, the out-

put voltage as determined above will be 10 V peak-to-peak (5 V peak)

as shown in Fig. 18.95(b). Note the out-of-phase relationship with the

input due to the opposite polarity of VL. The full response at the collec-

tor terminal of the transistor can then be drawn by superimposing the ac

response on the dc response as shown in Fig. 18.95(c) (another appli-

cation of the superposition theorem). In other words, the dc level sim-

ply shifts the ac waveform up or down and does not disturb its shape.

The peak-to-peak value remains the same, and the phase relationship is

unaltered. The total waveform at the load will include only the ac

response of Fig. 18.95(b) since the dc component has been blocked out

by the capacitor.

(a)

0 2TT t

12.94

VC (volts) dc

(c)

0 2TT t

vc (volts) ac + dc

12.94

17.94

7.94

(b)

0 2TT t

5

vc (volts) ac

–5

FIG. 18.95
Collector voltage for the network of Fig. 18.91: (a) dc; (b) ac; (c) dc and ac.

The voltage at the source will appear as shown in Fig. 18.96(a),

while the voltage at the base of the transistor will appear as shown in

Fig. 18.96(b) because of the presence of the dc component.

A number of important concepts were presented in the above exam-

ple, with some probably leaving a question or two because of your lack

of experience with transistors. However, if nothing else is evident from

the above example, it should be the power of the superposition theorem

to permit an isolation of the dc and ac responses and the ability to com-

bine both if the total response is desired.
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(a)

0 T t

vb (volts)

0.2

0 –T3
2

1.2

0.7

0 TT/2 t

vs (volts)

0.5

0

–0.5

–T3
2

(b)

T/2

FIG. 18.96
Applied signal: (a) at the source; (b) at the base of the transistor.

18.8 COMPUTER ANALYSIS
PSpice
Superposition The analysis will begin with the network of Fig.

18.12 from Example 18.4 because it has both an ac and a dc source. You

will find that it is not necessary to specify an analysis for each, even

though one is essentially an ac sweep and the other is a bias point calcu-

lation. When AC Sweep is selected, the program will automatically per-

form the bias calculations and display the results in the output file.

The resulting schematic appears in Fig. 18.97 with VSIN and VDC

as the SOURCE voltages. The placement of all the R-L-C elements and

FIG. 18.97
Using PSpice to apply superposition to the network of Fig. 18.12.
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the dc source should be quite straightforward at this point. For the ac

source, be sure to double-click on the source symbol to obtain the

Property Editor dialog box. Then set AC to 4 V, FREQ to 1 kHz,

PHASE to 0°, VAMPL to 4 V, and VOFF to 0 V. In each case choose

Name and Value under the Display heading so that we have a review

of the parameters on the screen. Also, be sure to Apply before exiting

the dialog box. Obtain the VPRINT1 option from the SPECIAL

library, place it as shown, and then double-click to obtain its Property

Editor. The parameters AC, MAG, and PHASE must then recieve the

OK listing, and Name and Value must be applied to each under

Display before you choose Apply and OK. The network is then ready

for simulation.

After you have selected the New Simulation Profile icon, the New

Simulation dialog box will appear in which SuperpositionAC is

entered as the Name. Following the selection of Create, the Simulation

Settings dialog box will appear in which AC Sweep/Noise is selected.

The Start and End Frequencies are both set at 1 kHz, and 1 is entered

for the Points/Decade request. Click OK, and then select the Run

PSpice key; the SCHEMATIC1 screen will result with an axis extend-

ing from 0.5 kHz to 1.5 kHz. Through the sequence Trace-Add Trace-

V(R3:1)-OK, the plot point appearing in the bottom of Fig. 18.98 will

result. Its value is slightly above the 2-V level and could be read as

2.05 V which compares very nicely with the hand-calculated solution of

2.06 V. The phase angle can be obtained from Plot-Add Plot to Window-

Trace-Add Trace-P(V(R3:1)) to obtain a phase angle close to 233°.

Additional accuracy can be added to the phase plot through the sequence

Plot-Axis Settings-Y Axis-User Defined 240d to 230d-OK, resulting

in the 232.5° reading of Fig. 18.98— again, very close to the hand cal-

FIG. 18.98
The output results from the simulation of the network of Fig. 18.97.
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culation of 232.74° of Example 18.4. Now this solution is fine for the

ac signal, but it tells us nothing about the dc component.

By exiting the SCHEMATIC1 screen, we obtain the Orcad Cap-

ture window on which PSpice can be selected followed by View Out-

put File. The result is the printout of Fig. 18.99 which has both the dc

and the ac solutions. The SMALL SIGNAL BIAS SOLUTION in-

cludes the nodes of the network and their dc levels. The node numbers

are defined under the netlist starting on line 30. In particular, note the

dc level of 3.6 V at node N00676 which is at the top of resistor R3 in

Fig. 18.97. Also note that the dc level of both ends of the inductor is the

same value because of the substitution of a short-circuit equivalent for

the inductor for dc analysis. The ac solution appears under the AC

ANALYSIS heading as 2.06 V at 232.66°, which again is a great ver-

ification of the results of Example 18.4.

Th

FIG. 18.99
The output file for the dc (SMALL SIGNAL BIAS SOLUTION) and

AC ANALYSIS for the network of Fig. 18.97.
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Finally, if a plot of the voltage across resistor R3 is desired, we must

return to the New Simulation Profile and enter a new Name such as

SuperpositionAC1 followed by Create fill in the Simulation Profile

dialog box. This time, however, we will choose the Time

Domain(Transient) option so that we can obtain a plot against time.

The fact that the source has a defined frequency of 1 kHz will tell the

program which frequency to apply. The Run to time will be 5 ms,

resulting in a five-cycle display of the 1-kHz signal. The Start saving

data after will remain at 0 s, and the Maximum step size will be

5 ms/1000 5 5 ms. Click OK, and select the Run PSpice icon; the

SCHEMATIC1 screen will result again. This time Trace-Add Trace-

V(R3:1)-OK will result in the plot of Fig. 18.100 which clearly shows

a dc level of 3.6 V. Setting a cursor at t 5 0 s (A1) will result in 3.6 V

in the Probe Cursor display box. Placing the other cursor at the peak

value at 2.34 ms (A2) will result in a peak value of about 5.66 V. The

difference between the peak and the dc level provides the peak value of

the ac signal and is listed as 2.06 V in the same Probe Cursor display

box. A variety of options have now been introduced to find a particular

voltage or current in a network with both dc and ac sources. It is cer-

tainly satisfying that they all verify our theoretical solution.

Thévenin’s Theorem The next application will parallel the methods

employed to determine the Thévenin equivalent circuit for dc circuits.

The network of Fig. 18.28 will appear as shown in Fig. 18.101 when

the open-circuit Thévenin voltage is to be determined. The open circuit

is simulated by using a resistor of 1 T (1 million MV). The resistor is

necessary to establish a connection between the right side of inductor

L2 and ground—nodes cannot be left floating for Orcad simulations.

Th

FIG. 18.100
Using PSpice to display the voltage across R3 for the network of Fig. 18.97.
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FIG. 18.101
Using PSpice to determine the open-circuit Thévenin voltage.

Since the magnitude and the angle of the voltage are required,

VPRINT1 is introduced as shown in Fig 18.101. The simulation was an

AC Sweep simulation at 1 kHz, and when the Orcad Capture window

was obtained, the results appearing in Fig. 18.102 were taken from the

listing resulting from the PSpice-View Output File. The magnitude of

the Thévenin voltage is 5.187 V to compare with the 5.08 V of Exam-

ple 18.8, while the phase angle is 277.13° to compare with the

277.09° of the same example—excellent results.

FIG. 18.102
The output file for the open-circuit Thévenin voltage for the network 

of Fig. 18.101.
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FIG. 18.103
Using PSpice to determine the short-circuit current.

Next, the short-circuit current will be determined using IPRINT as

shown in Fig. 18.103, to permit a determination of the Thévenin imped-

ance. The resistance Rcoil of 1 mV had to be introduced because induc-

tors cannot be treated as ideal elements when using PSpice; they must

all show some series internal resistance. Note that the short-circuit

current will pass directly through the printer symbol for IPRINT. Inci-

dentally, there is no need to exit the SCHEMATIC1 developed above

to determine the Thévenin voltage. Simply delete VPRINT and R3,

and insert IPRINT. Then run a new simulation to obtain the results of

Fig. 18.104. The magnitude of the short-circuit current is 0.936 A at an

angle of 2108°. The Thévenin impedance is then defined by

ZTh 5 5 5 5.54 V /30.87°

which is an excellent match with 5.49 V

/32.36° obtained in Example 18.8.

5.187 V /277.13°
}}
0.936 A /2108.0°

ETh
}
Isc

VCVS The last application of this section will be to verify the results

of Example 18.12 and to gain some practice using controlled (depen-

dent) sources. The network of Fig. 18.50, with its voltage-controlled

voltage source (VCVS), will have the schematic appearance of Fig.

18.105. The VCVS appears as E in the ANALOG library, with the volt-

age E1 as the controlling voltage and E as the controlled voltage. In the

Property Editor dialog box, the GAIN must be changed to 20 while
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the rest of the columns can be left as is. After Display-Name and

Value, Apply can be selected and the dialog box exited to result in

GAIN 5 20 near the controlled source. Take particular note of the sec-

ond ground inserted near E to avoid a long wire to ground that might

overlap other elements. For this exercise the current source ISRC will

be used because it has an arrow in its symbol, and frequency is not

Th

FIG. 18.104
The output file for the short-circuit current for the network of Fig. 18.103.

FIG. 18.105
Using PSpice to determine the open-circuit Thévenin voltage for the 

network of Fig. 18.50.
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important for this analysis since there are only resistive elements pre-

sent. In the Property Editor dialog box, the AC level is set to 5 mA,

and the DC level to 0 A; both were displayed using Display-Name and

value. VPRINT1 is set up as in past exercises. The resistor Roc (open

circuit) was given a very large value so that it would appear as an open

circuit to the rest of the network. VPRINT1 will provide the open cir-

cuit Thévenin voltage between the points of interest. Running the sim-

ulation in the AC Sweep mode at 1 kHz will result in the output file

appearing in Fig. 18.106, revealing that the Thévenin voltage is 210 V

/0°. Substituting the numerical values of this example into the equa-

tion obtained in Example 18.12 confirms the result:

ETh 5 (1 1 m)IR1 5 (1 1 20) (5 mA /0°)(2 kV)

5 210 V/0°

Th

FIG. 18.106
The output file for the open-circuit Thévenin voltage for the network 

of Fig. 18.105.

Next, the short-circuit current must be determined using the IPRINT

option. Note in Fig. 18.107 that the only difference between this net-

work and that of Fig. 18.106 is the replacement of Roc with IPRINT

and the removal of VPRINT1. There is therefore no need to completely

“redraw” the network. Just make the changes and run a new simulation.

The result of the new simulation as shown in Fig. 18.108 is a current of

5 mA at an angle of 0°.

The ratio of the two measured quantities will result in the Thévenin

impedance:

ZTh 5 5 5 5 42 kV

which also matches the longhand solution of Example 18.12:

ZTh 5 (1 1 m)R1 5 (1 1 20)2 kV 5 (21)2 kV 5 42 kV

The analysis of the full transistor equivalent network of Fig. 18.56

with two controlled sources can be found in the PSpice section of

Chapter 26.

210 V /0°
}}
5 mA /0°

ETh
}
Isc

Eoc
}
Isc
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FIG. 18.108
The output file for the short-circuit current for the network of Fig. 18.107.

FIG. 18.107
Using PSpice to determine the short-circuit current for the network 

of Fig. 18.50.
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PROBLEMS
SECTION 18.2 Superposition Theorem

1. Using superposition, determine the current through the

inductance XL for each network of Fig. 18.109.

R 3 V

+

E1  =  30 V ∠ 30°
–

IL
XC 6 V

+

E2  =  60 V ∠ 10°
–

XL 8 V

(a)

I  =  0.3 A ∠ 60°

IL
XC 5 V

+

E  =  10 V ∠ 0°
–

XL 8 V

(b)

FIG. 18.109
Problem 1.

*2. Using superposition, determine the current IL for each

network of Fig. 18.110.

R 1 V

+

E1  =  20 V ∠ 0°
–

IL

+

E2  =  120 V ∠ 0°
–

XL 3 V

(a)

IL

XC2
7 V

I  =  0.5 A ∠ 60°

R

4 V

+

E  =  10 V ∠ 90°
–

XL

3 V

(b)

I  =  0.6 A ∠ 120°

XC1

6 V

FIG. 18.110
Problem 2.

*3. Using superposition, find the sinusoidal expression for

the current i for the network of Fig. 18.111.

4. Using superposition, find the sinusoidal expression for

the voltage vC for the network of Fig. 18.112.

FIG. 18.111
Problems 3, 15, 30, and 42.

R1 6 V

4 V

XL

2 VXCE2  =  4 V

+

–

+

–

E1  =  10 V ∠0°
R2 8 V

i

R2

3 V

1 VXC

+

–

 4 A ∠0°I vC

R1

6 V

12 V

FIG. 18.112
Problems 4, 16, 31, and 43.
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R 20 kV

+–
E  =  10 V ∠ 0°

10 kVXL

IL

hI

I  =  2 mA ∠ 0°

FIG. 18.114
Problems 6 and 20.

7. Using superposition, for the network of Fig. 18.115,

determine the voltage VL (m 5 20).

FIG. 18.115
Problems 7, 21, and 35.

R2 4 kVV  =  2 V ∠ 0° I  =  2 mA ∠ 0°mV

–

+–

+

R1

5 kV

XC

1 kV

–

+

VL

*5. Using superposition, find the current I for the network of

Fig. 18.113.

FIG. 18.113
Problems 5, 17, 32, and 44.

R1 10 kV

5 kVXC

+–

I  =  5 mA ∠ 0°
R2 5 kV

E  =  20 V ∠ 0°

5 kVXL

I

6. Using superposition, determine the current IL (h 5 100)

for the network of Fig. 18.114.
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*8. Using superposition, determine the current IL for the net-

work of Fig. 18.116 (m 5 20; h 5 100).

V  =  10 V ∠ 0°

mV
– +

–

+

R1 20 kV

R2

5 kV

5 kVXL

IL

I  =  1 mA ∠ 0°

hI

FIG. 18.116
Problems 8, 22, and 36.

*9. Determine VL for the network of Fig. 18.117 (h 5 50).

RL 2 kV

+

–

E  =  20 V ∠ 53° VLhI

+

–

I

R1  =  2 kV

FIG. 18.117
Problems 9 and 23.

R2 5 kV

+ –

I1  =  1 mA ∠ 0°

I

20V

R1 2 kV I2  =  2 mA ∠ 0°
+

–
V

FIG. 18.118
Problems 10, 24, and 38.

*10. Calculate the current I for the network of Fig. 18.118.
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*13. Find the Thévenin equivalent circuit for the portions of

the networks of Fig. 18.121 external to the elements

between points a and b.

I  =  0.1 A ∠ 0°

XL

20 VR1

20 V

XC 32 V

a

b

(a)

+

–

E  =  50 V ∠ 0°

XC2

2 V

R1

6 V

XL

4 V

a

b

(b)

R2  =  68 V

XC1

8 V
R2

10 V

FIG. 18.121
Problems 13 and 27.

I

R2 2 V

+

R1 10 VVx

–

10 V∠0°

–

E1

+

–

4Vx

+
5 A∠0°

–

Vs

+

FIG. 18.119
Problem 11.

11. Find the voltage Vs for the network of Fig. 18.119.

+

–

E  =  100 V ∠ 0° XL

3 V

R

4 V XC 2 V

a

b

(a)

+

–

E  =  20 V ∠ 0°

XL

2 kV

R

6 kV

XC 3 kV

a

b

(b)

RL

FIG. 18.120
Problems 12 and 26.

SECTION 18.3 Thévenin’s Theorem
12. Find the Thévenin equivalent circuit for the portions of

the networks of Fig. 18.120 external to the elements

between points a and b.
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*15. a. Find the Thévenin equivalent circuit for the network

external to the resistor R2 in Fig. 18.111.

b. Using the results of part (a), determine the current i of

the same figure.

16. a. Find the Thévenin equivalent circuit for the network

external to the capacitor of Fig. 18.112.

b. Using the results of part (a), determine the voltage VC

for the same figure.

*17. a. Find the Thévenin equivalent circuit for the network

external to the inductor of Fig. 18.113.

b. Using the results of part (a), determine the current I of

the same figure.

18. Determine the Thévenin equivalent circuit for the net-

work external to the 5-kV inductive reactance of Fig.

18.123 (in terms of V).

19. Determine the Thévenin equivalent circuit for the net-

work external to the 4-kV inductive reactance of Fig.

18.124 (in terms of I).

–

+

R1 10 kV

R2 10 kV XL 5 kV

XC

1 kV

Th

20V

FIG. 18.123
Problems 18 and 33.

*14. Find the Thévenin equivalent circuit for the portions of

the networks of Fig. 18.122 external to the elements

between points a and b.

(a)

–

+

E1  =  120 V ∠ 0°

R

10 V

XC

8 V

XL 8 V
I =
0.5 A ∠ 60° ZL

a

b

R2

10 V

XC

10 V

a

b

I  =  0.6 A ∠ 90° E  =  20 V ∠ 40°
–

+

R1 9 V
I2  =
0.8 ∠ 60°

(b)

FIG. 18.122
Problems 14 and 28.

R1 40 kV R2 5 kV

Th

XL 4 kV100I

XC

0.2 kV

FIG. 18.124
Problems 19 and 34.
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20. Find the Thévenin equivalent circuit for the network

external to the 10-kV inductive reactance of Fig. 18.114.

21. Determine the Thévenin equivalent circuit for the net-

work external to the 4-kV resistor of Fig. 18.115.

*22. Find the Thévenin equivalent circuit for the network

external to the 5-kV inductive reactance of Fig. 18.116.

*23. Determine the Thévenin equivalent circuit for the net-

work external to the 2-kV resistor of Fig. 18.117.

*24. Find the Thévenin equivalent circuit for the network

external to the resistor R1 of Fig. 18.118.

*25. Find the Thévenin equivalent circuit for the network to

the left of terminals a-a9 of Fig. 18.125.

SECTION 18.4 Norton’s Theorem
26. Find the Norton equivalent circuit for the network exter-

nal to the elements between a and b for the networks of

Fig. 18.120.

27. Find the Norton equivalent circuit for the network exter-

nal to the elements between a and b for the networks of

Fig. 18.121.

28. Find the Norton equivalent circuit for the network exter-

nal to the elements between a and b for the networks of

Fig. 18.122.

*29. Find the Norton equivalent circuit for the portions of the

networks of Fig. 18.126 external to the elements between

points a and b.

R1 2 kV

+

8 V∠0°
5Ix R3 3.3 kV

R2

1 kV

E
–

Thévenin

Ix

a

á

FIG. 18.125
Problem 25.

–

+
R2 9 V

R1

6 V

XC 12 V
b

a

XL

8 V

E I2  =  0.4 A ∠ 20°

XL

4 V

–

+

E1  =  120 V ∠ 30° R2 8 V

–

+

E2  =  108 V ∠ 0°

R1  =  3 V XC 8 V

R3 68 V

R4 40 V

a

b

ZL20 V ∠ 0°

(a) (b)

FIG. 18.126
Problem 29.

*30. a. Find the Norton equivalent circuit for the network

external to the resistor R2 in Fig. 18.111.

b. Using the results of part (a), determine the current I of

the same figure.

*31. a. Find the Norton equivalent circuit for the network

external to the capacitor of Fig. 18.112.

b. Using the results of part (a), determine the voltage VC

for the same figure.

*32. a. Find the Norton equivalent circuit for the network

external to the inductor of Fig. 18.113.

b. Using the results of part (a), determine the current I of

the same figure.

33. Determine the Norton equivalent circuit for the network

external to the 5-kV inductive reactance of Fig. 18.123.
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34. Determine the Norton equivalent circuit for the network

external to the 4-kV inductive reactance of Fig. 18.124.

35. Find the Norton equivalent circuit for the network exter-

nal to the 4-kV resistor of Fig. 18.115.

*36. Find the Norton equivalent circuit for the network exter-

nal to the 5-kV inductive reactance of Fig. 18.116.

*37. For the network of Fig. 18.127, find the Norton equiva-

lent circuit for the network external to the 2-kV resistor.

*38. Find the Norton equivalent circuit for the network exter-

nal to the I1 current source of Fig. 18.118.

SECTION 18.5 Maximum Power Transfer Theorem
39. Find the load impedance ZL for the networks of Fig.

18.128 for maximum power to the load, and find the

maximum power to the load.

R1 1 kV  V R2 3 kV R4 2 kVI  =  2 mA ∠ 0°

R3

4 kV

– +

–

+

µ(   =  20)
µV

FIG. 18.127
Problem 37.

–

+

R1

3 V

XC 6 V

XL

4 V

E =  120 V ∠ 0° ZL

(a)

XL

4 V

I =  2 A ∠ 30°

ZL

(b)

R2 2 VR1 3 V

FIG. 18.128
Problem 39.
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*40. Find the load impedance ZL for the networks of Fig.

18.129 for maximum power to the load, and find the

maximum power to the load.

–

+

R

10 V

XC1
5 V

XL

4 V

E =  60 V ∠ 60°

(a)

XL1

4 V

ZL

(b)

R2 12 VR1 3 V

ZL

XC2
6 V

9 V

XC 8 V

E1 =  100 V ∠ 0° E2 =  200 V ∠ 90°

XL2

–

+

–

+

FIG. 18.129
Problem 40.

41. Find the load impedance RL for the network of Fig.

18.130 for maximum power to the load, and find the

maximum power to the load.

–

+

R1 1 kV R2 40 kV RL

I

50I

E  =  1 V ∠ 0°

FIG. 18.130
Problem 41.

*42. a. Determine the load impedance to replace the resistor

R2 of Fig. 18.111 to ensure maximum power to the

load.

b. Using the results of part (a), determine the maximum

power to the load.

*43. a. Determine the load impedance to replace the capaci-

tor XC of Fig. 18.112 to ensure maximum power to the

load.

b. Using the results of part (a), determine the maximum

power to the load.

*44. a. Determine the load impedance to replace the inductor

XL of Fig. 18.113 to ensure maximum power to the

load.

b. Using the results of part (a), determine the maximum

power to the load.

45. a. For the network of Fig. 18.131, determine the value of

RL that will result in maximum power to the load.

b. Using the results of part (a), determine the maximum

power delivered.

–

+

R

2 kV
LOAD

RL

XL 2 kV

XC

2 kV
E  =  50 V ∠ 0°

FIG. 18.131
Problem 45.
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*46. a. For the network of Fig. 18.132, determine the level of

capacitance that will ensure maximum power to the

load if the range of capacitance is limited to 1 nF to

5 nF.

b. Using the results of part (a), determine the value of RL

that will ensure maximum power to the load.

c. Using the results of parts (a) and (b), determine the

maximum power to the load.

–

+
RL

E  =  2 V ∠ 0° R 1 kV C 3.98 nF

C (1 –  5 nF)

LOAD

31.8 mH

L

f  =  10 kHz

FIG. 18.132
Problem 46.

SECTION 18.6 Substitution, Reciprocity, and
Millman’s Theorems
47. For the network of Fig. 18.133, determine two equivalent

branches through the substitution theorem for the branch

a-b.

R1 4 kV R2 8 kV

a

b

I  =  4 mA ∠ 0°

FIG. 18.133
Problem 47.

–

+

R1

1 kV

R2

8 kV

R4

11 kV

R3

4 kV

R5

6 kV
E  =  20 V ∠ 0°

I

R1

1 kV

R2

8 kV

R4

11 kV

R3

4 kV

R5  =  6 kV

E  =  20 V ∠ 0°

I

(a) (b)

–

+

FIG. 18.134
Problem 48.

48. a. For the network of Fig. 18.134(a), find the current I.

b. Repeat part (a) for the network of Fig. 18.134(b).

c. Do the results of parts (a) and (b) compare?
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49. Using Millman’s theorem, determine the current through

the 4-kV capacitive reactance of Fig. 18.135.

–

+

XL 4 kVR1 2 kV
IC

4 kV

E1  =  100 V ∠ 0° E2  =  50 V ∠ 360°
XC

–

+

FIG. 18.135
Problem 49.

SECTION 18.8 Computer Analysis
PSpice or Electronics Workbench
50. Apply superposition to the network of Fig. 18.6. That is,

determine the current I due to each source, and then find

the resultant current.

*51. Determine the current IL for the network of Fig. 18.21

using schematics.

*52. Using schematics, determine V2 for the network of Fig.

18.56 if Vi 5 1 V /0°, R1 5 0.5 kV, k1 5 3 3 1024,

k2 5 50, and R2 5 20 kV.

*53. Find the Norton equivalent circuit for the network of Fig.

18.75 using schematics.

*54. Using schematics, plot the power to the R-C load of Fig.

18.88 for values of RL from 1 V to 10 V.

Programming Language (C11, QBASIC, Pascal, etc.)
55. Given the network of Fig. 18.1, write a program to deter-

mine a general solution for the current I using superposi-

tion. That is, given the reactance of the same network ele-

ments, determine I for voltage sources of any magnitude

but the same angle.

56. Given the network of Fig. 18.23, write a program to

determine the Thévenin voltage and impedance for any

level of reactance for each element and any magnitude of

voltage for the voltage source. The angle of the voltage

source should remain at zero degrees.

57. Given the configuration of Fig. 18.136, demonstrate that

maximum power is delivered to the load when XC 5 XL

by tabulating the power to the load for XC varying from

0.1 kV to 2 kV in increments of 0.1 kV.

R2 2 kV

R1

2 kV

XC

ZL

1 kV

XL

E  =  10 V ∠ 0°

+

–

FIG. 18.136
Problem 57.

GLOSSARY
Maximum power transfer theorem A theorem used to

determine the load impedance necessary to ensure maxi-

mum power to the load.

Millman’s theorem A method employing voltage-to-current

source conversions that will permit the determination of

unknown variables in a multiloop network.

Norton’s theorem A theorem that permits the reduction of

any two-terminal linear ac network to one having a single

current source and parallel impedance. The resulting config-

uration can then be employed to determine a particular cur-

rent or voltage in the original network or to examine the

effects of a specific portion of the network on a particular

variable.

Reciprocity theorem A theorem stating that for single-

source networks, the magnitude of the current in any branch

of a network, due to a single voltage source anywhere else

in the network, will equal the magnitude of the current

through the branch in which the source was originally

located if the source is placed in the branch in which the

current was originally measured.

Substitution theorem A theorem stating that if the voltage

across and current through any branch of an ac bilateral net-


